数据增强(python)

'''
    这是图片数据增强的代码,可以对图片实现:
    1. 尺寸放大缩小
    2. 随机裁剪
    3. 变形
    4. 旋转(任意角度,如45°,90°,180°,270°)
    5. 翻转(水平翻转,垂直翻转)
    6. 明亮度改变(变亮,变暗)
    7. 像素平移(往一个方向平移像素,空出部分自动填补黑色)
    8. 添加噪声(椒盐噪声,高斯噪声)
'''
import os
import cv2
import numpy as np
# import tensorflow as tf
import random as rd
import matplotlib
matplotlib.use('TkAgg')
from matplotlib import pyplot as plt

'''
缩放
'''
# 放大缩小
def Scale(image, scale):
    return cv2.resize(image,(500,500),fx=scale,fy=scale,interpolation=cv2.INTER_LINEAR)

'''
裁剪
'''
def crop(image, min_ratio=0.6, max_ratio=1.0):
    h, w = image.shape[:2]
    ratio = rd.random()
    scale = min_ratio + ratio * (max_ratio - min_ratio)
    new_h = int(h*scale)    
    new_w = int(w*scale)
    y = np.random.randint(0, h - new_h)    
    x = np.random.randint(0, w - new_w)
    image = image[y:y+new_h, x:x+new_w, :]
    return image

# #随机裁剪
# def crop(image):
#     x,y,z = image[:]
#     return tf.random_crop(image,[x*rd.random,y*rd.random,z])

'''
变形
'''
def change(image):
    x,y = image.shape[:2]
    pts1 = np.float32([[50,50], [200,50], [50,200]])
    pts2 = np.float32([[10,100], [200,50], [100,250]])
    M = cv2.getAffineTransform(pts1, pts2)
    dst = cv2.warpAffine(image, M,(y,x),borderValue=(255,255,255))
    return dst

'''
翻转
'''
# 水平翻转
def Horizontal(image):
    return cv2.flip(image,1,dst=None) #水平镜像

# 垂直翻转
def Vertical(image):
    return cv2.flip(image,0,dst=None) #垂直镜像

# 旋转,R可控制图片放大缩小
def Rotate(image, angle=15, scale=0.9):
    w = image.shape[1]
    h = image.shape[0]
    #rotate matrix
    M = cv2.getRotationMatrix2D((w/2,h/2), angle, scale)
    #rotate
    image = cv2.warpAffine(image,M,(w,h))
    return image

'''  
明亮度 
'''
# 变暗
def Darker(image,percetage=0.9):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get darker
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = int(image[xj,xi,0]*percetage)
            image_copy[xj,xi,1] = int(image[xj,xi,1]*percetage)
            image_copy[xj,xi,2] = int(image[xj,xi,2]*percetage)
    return image_copy

# 明亮
def Brighter(image, percetage=1.1):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    #get brighter
    for xi in range(0,w):
        for xj in range(0,h):
            image_copy[xj,xi,0] = np.clip(int(image[xj,xi,0]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,1] = np.clip(int(image[xj,xi,1]*percetage),a_max=255,a_min=0)
            image_copy[xj,xi,2] = np.clip(int(image[xj,xi,2]*percetage),a_max=255,a_min=0)
    return image_copy

# 平移
def Move(img,x,y):
    img_info=img.shape
    height=img_info[0]
    width=img_info[1]

    mat_translation=np.float32([[1,0,x],[0,1,y]])  #变换矩阵:设置平移变换所需的计算矩阵:2行3列
    #[[1,0,20],[0,1,50]]   表示平移变换:其中x表示水平方向上的平移距离,y表示竖直方向上的平移距离。
    dst=cv2.warpAffine(img,mat_translation,(width,height))  #变换函数
    return dst

'''
增加噪声
'''
# 椒盐噪声
def SaltAndPepper(src,percetage):
    SP_NoiseImg=src.copy()
    SP_NoiseNum=int(percetage*src.shape[0]*src.shape[1])
    for i in range(SP_NoiseNum):
        randR=np.random.randint(0,src.shape[0]-1)
        randG=np.random.randint(0,src.shape[1]-1)
        randB=np.random.randint(0,3)
        if np.random.randint(0,1)==0:
            SP_NoiseImg[randR,randG,randB]=0
        else:
            SP_NoiseImg[randR,randG,randB]=255
    return SP_NoiseImg

# 高斯噪声
def GaussianNoise(image,percetage):
    G_Noiseimg = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    G_NoiseNum=int(percetage*image.shape[0]*image.shape[1])
    for i in range(G_NoiseNum):
        temp_x = np.random.randint(0,h)
        temp_y = np.random.randint(0,w)
        G_Noiseimg[temp_x][temp_y][np.random.randint(3)] = np.random.randn(1)[0]
    return G_Noiseimg

def Blur(img):
    blur = cv2.GaussianBlur(img, (7, 7), 1.5)
    # #      cv2.GaussianBlur(图像,卷积核,标准差)
    return blur
    
# 单图增强
def TestOnePic():
    test_jpg_loc = r"data/daisy/1.jpg"
    test_jpg = cv2.imread(test_jpg_loc)
    cv2.imshow("Show Img", test_jpg)
    # cv2.waitKey(0)
    img1 = Blur(test_jpg)
    cv2.imshow("Img 1", img1)
    # cv2.waitKey(0)
    # img2 = GaussianNoise(test_jpg,0.01)
    # cv2.imshow("Img 2", img2)
    cv2.waitKey(0)

# 多图/文件夹增强
def TestOneDir():
    root_path = "data/daisy"
    save_path = root_path
    for a, b, c in os.walk(root_path):
        for file_i in c:
            file_i_path = os.path.join(a, file_i)
            print(file_i_path)
            img_i = cv2.imread(file_i_path)

            # img_scale = Scale(img_i,1.5)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_scale.jpg"), img_scale)

            # img_horizontal = Horizontal(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_horizontal.jpg"), img_horizontal)
            #
            # img_vertical = Vertical(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_vertical.jpg"), img_vertical)
            #
            # img_rotate = Rotate(img_i,90)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_rotate90.jpg"), img_rotate)
            #
            # img_rotate = Rotate(img_i, 180)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_rotate180.jpg"), img_rotate)
            #
            # img_rotate = Rotate(img_i, 270)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_rotate270.jpg"), img_rotate)
            #
            # img_move = Move(img_i,15,15)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_move.jpg"), img_move)
            #
            # img_darker = Darker(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_darker.jpg"), img_darker)
            #
            # img_brighter = Brighter(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_brighter.jpg"), img_brighter)
            #
            # img_blur = Blur(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_blur.jpg"), img_blur)
            #
            # img_salt = SaltAndPepper(img_i,0.05)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_salt.jpg"), img_salt)

            # img_salt = GaussianNoise(img_i,0.05)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_GaussianNoise.jpg"), img_salt)
            
# 多图/文件夹增强
def AllData(root_path):
    #root_path = "data/"
    save_loc = root_path
    for a,b,c in os.walk(root_path):
        for file_i in c:
            file_i_path = os.path.join(a,file_i)
            #print(file_i_path)
            if '.DS_Store' in file_i_path:
                continue
            split = os.path.split(file_i_path)
            #print('split',split)
            dir_loc = os.path.split(split[0])[1]
            #print('dir_loc',dir_loc)
            save_path = os.path.join(save_loc,dir_loc)
            #查看保存文件地址,缺失文件夹需手动创建。
            print('save_path',save_path)
            


            img_i = cv2.imread(file_i_path)
            # img_scale = Scale(img_i,1.5)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_scale.jpg"), img_scale)

            # img_crop = crop(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_crop.jpg"), img_crop)

            # img_change = change(img_i)
            # cv2.imwrite(os.path.join(save_path,file_i[:-4] + "_change.jpg"),img_change)

            # img_horizontal = Horizontal(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_horizontal.jpg"), img_horizontal)
            # #
            # img_vertical = Vertical(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_vertical.jpg"), img_vertical)
            # #
            # img_rotate = Rotate(img_i, 90)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_rotate90.jpg"), img_rotate)
            # #
            # img_rotate = Rotate(img_i, 180)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_rotate180.jpg"), img_rotate)
            # #
            # img_rotate = Rotate(img_i, 270)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_rotate270.jpg"), img_rotate)
            # #
            # img_move = Move(img_i, 15, 15)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_move.jpg"), img_move)
            # #
            # img_darker = Darker(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_darker.jpg"), img_darker)
            # #
            # img_brighter = Brighter(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_brighter.jpg"), img_brighter)
            # #
            # img_blur = Blur(img_i)
            # cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_blur.jpg"), img_blur)
            # #
            img_salt = SaltAndPepper(img_i, 0.05)
            cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_salt.jpg"), img_salt)

            img_salt = GaussianNoise(img_i,0.1)
            cv2.imwrite(os.path.join(save_path, file_i[:-4] + "_GaussianNoise.jpg"), img_salt)
            

if __name__ == "__main__":
    # TestOneDir()
    # TestOnePic()
    root_path = "/Users/alanchris/Desktop/pic"
    AllData(root_path)






评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值