自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 YOLO11全面解答!!!更快!更强!

Ultralytics YOLO11 是一种尖端、最先进 (SOTA) 模型,它建立在先前 YOLO 版本成功的基础上,并引入了新功能和改进,以进一步提高性能和灵活性。YOLO11 的设计目标是快速、准确且易于使用,使其成为各种对象检测和跟踪、实例分割、图像分类和姿态估计任务的绝佳选择。

2024-10-09 13:33:13 91

原创 华为OD全方位解答

1)人力外包签约方为科锐国际、外企德科(人力服务公司),劳动合同期为4年,试用期6个月。2)员工关系合同管理、五险一金、考勤发薪由科锐国际负责;定级定薪、员工培训、工作安排、绩效评比和晋升等由华为负责。3)工作关系和正式员工一起在华为研究所办公,工作内容基本没有差异。当然也见过有些人进来做OD吐槽不用怎么写代码学不到东西的,这个其实跟你当时选择了什么部门什么团队有关系,部门和团队的项目定位决定了你的工作性质、学习资源和发展空间。不存在核心非核心区别对待,主管和导师都是华为正式员工。

2024-09-24 16:02:23 1172

原创 ADAS---基于检测框的单目测距方法

Yolo模型可以输出被检测物体的置信度、类别及检测框的中心点坐标。为相机光心,车载相机安装高度为 H,焦距为 f,俯仰角为β,相似三角形测距,需要提前预设测距目标的实际宽高。为目标实际高度,通常根据查阅给出经验值,为等效焦距,由实际焦距除以像元尺寸得出。模型求解法需要测量相机外参,即。为被检测物体参考平面的高度。为相机到实际目标的距离,点与光轴投影的夹角为。

2024-09-02 10:44:54 541

原创 华为od全面介绍!!!

【合同及管理】签约方为科锐国际/外企德科(人力服务公司),劳动合同期为4年,试用期6个月。员工关系合同管理、五险一金、考勤发薪由科锐国际/外企德科负责;定级定薪、员工培训、工作安排、绩效评比和晋升等由华为负责。

2024-08-30 10:49:59 2361 1

原创 YOLO-World: Real-Time Open-Vocabulary Object Detection:实时开放词汇对象检测

针对这一限制,我们引入了YOLO-World,这是一种创新方法,通过视觉语言建模和大规模数据集的预训练,增强了YOLO的开放词汇检测功能。在具有挑战性的LVIS数据集上,YOLO-World在V100上实现了35.4 AP和52.0 FPS,在准确性和速度方面优于许多最先进的方法。(a)传统的对象检测器:这些对象检测器只能检测由训练数据集预定义的固定词汇表内的对象,例如,COCO数据集的80个类别。(b)以往的开放词汇检测器:以往的方法倾向于开发大而重的检测器,用于直观地具有很强的能力的开放词汇检测。

2024-08-28 15:01:28 477

原创 Python lambda(匿名函数)

Python 使用 lambda 来创建匿名函数。lambda 函数是一种小型、匿名的、内联函数,它可以具有任意数量的参数,但只能有一个表达式。匿名函数不需要使用 def 关键字定义完整函数。lambda 函数通常用于编写简单的、单行的函数,通常在需要函数作为参数传递的情况下使用,例如在 map()、filter()、reduce() 等函数中。

2024-08-27 13:30:12 882

原创 Python os.path 模块使用方法

os.path 模块主要用于获取文件的属性。

2024-08-26 14:33:18 388

原创 华为OD就业和薪资情况

华为OD就业和薪资情况。

2024-07-20 18:01:54 2461

原创 超详细!想进华为od的请疯狂看我!

① 基本工资+绩效工资+年终奖(2-4个月,一般绩效A-4个月,B-2个月);③ 试用期内(6个月)工资不打折,按B绩效发绩效工资,转正时重新评绩效,一般分A、B、C三档(主要A或B,C概率较小),和正式员工分开评,半年评一次;① 上班8:0-9:00弹性(根据地域不一样有稍许差别),午休12:00-14:00,下班17:30-18:30(上下班时间一般跟所在项目组走);学历要求已毕业(23届目前大量招聘培养),本科及以上学历,毕业&学位证齐全(学信网可查),目前对院校背景有要求,可具体详聊。

2024-06-23 22:04:05 6514

原创 基于Transformer的目标检测:原理、应用与未来展望

目标检测作为计算机视觉领域的一个核心任务,近年来随着深度学习技术的发展而取得了显著进步。Transformer,最初在自然语言处理领域取得巨大成功的模型,已经被引入到目标检测任务中,并展现出了强大的潜力。本文将详细介绍Transformer在目标检测中的应用,分析其原理、优缺点,并探讨未来的发展方向。

2024-06-23 21:56:11 1439

原创 超越YOLOv8,飞桨推出精度最高的实时检测器RT-DETR!

为避免该问题,我们将目光移向了不需要 NMS 后处理的 DETR,一种基于 Transformer 的端到端目标检测器。然而,相比于 YOLO 系列检测器,DETR 系列检测器的速度要慢的多,这使得"无需 NMS "并未在速度上体现出优势。上述问题促使我们针对实时的端到端检测器进行探索,旨在基于 DETR 的优秀架构设计一个全新的实时检测器,从根源上解决 NMS 对实时检测器带来的速度延迟问题。ansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能。

2024-06-23 21:51:13 661

原创 Python编程技巧大全

Python是一种高级编程语言,以其简洁明了的语法和强大的功能库而广受欢迎。无论是数据科学、机器学习还是Web开发,Python都有着广泛的应用。在这篇文章中,我们将分享一些Python编程的常见技巧,帮助你提升编程效率,写出更加优雅和高效的代码。以上就是一些Python编程的常见技巧。掌握这些技巧,可以帮助你更加高效地使用Python进行编程。当然,Python的功能远不止这些,不断学习和实践是提升编程技能的关键。

2024-04-11 22:29:41 415 1

原创 YOLOv9:下一代目标检测的革新

YOLOv9作为最新发布的目标检测算法,其在性能、结构和训练策略上的创新,使其成为了该领域的一颗新星。无论是在学术研究还是实际应用中,YOLOv9都有着广阔的前景和潜力。随着技术的不断发展和优化,我们有理由相信,YOLO系列将会在未来继续引领目标检测技术的发展。

2024-04-11 22:26:26 1029

原创 深度学习算法工程师面试常见问题及解答

准备这些问题时,不仅要理解概念,还要能够通过实际代码示例来展示你的技能。此外,面试中可能会包含一些编程练习或现场编码测试,以评估你的实际编程能力。以上是一些常见的深度学习算法工程师面试问题及解答。希望这些信息能够帮助你更好地准备面试,并在面试中展现出你的专业知识和技能。

2024-03-21 22:22:53 682

原创 单目深度估计:从理论到实践

深度指的是物体表面到观察者(例如摄像头)的距离。在计算机视觉中,我们通常用深度图来表示这种距离信息,其中每个像素的值对应于场景中某一点的深度值。

2024-03-21 22:22:19 1492 1

原创 【无标题】

大体思路是首先将双目摄像头的左图作为整个网络的输入,经过一个卷积神经网络,输出两张分别对应双目摄像头左图和右图的视差图,再将真正的右图加进来,通过预测得到的视差图与拿过来的右图进行处理,生成左图。然而有监督的方式需要采集真实的视差图或深度图作为监督信号,这在公共数据集上较好实现,如果需要构建红外数据集,则其深度真值较难采集,故还需要调研无监督或半监督方法。相比较有监督网络,在生成视差的基础上多了一个视图合成网络,从而以重建的视图与源视图之间的差异来指导网络的训练,而不需要深度真值。D 为定义的最大视差)。

2024-03-18 22:52:23 810

原创 量化训练在ISP图像信号处理中的应用案例

尤其是在移动设备和边缘计算设备上,量化能够有效减少模型的内存占用和计算需求,从而实现实时的图像处理。本文将通过一个具体的案例,探讨量化训练在ISP中的应用,特别是在图像超分辨率任务中的实际效果和实施步骤。通过本案例,我们可以看到,即使在图像超分辨率这样复杂的任务中,量化训练也能够在保持模型性能的同时显著降低模型的运行成本。在移动设备上,我们可以使用Paddle-Lite提供的API来加载和运行模型,实现实时的图像超分辨率处理。在量化之前,我们需要确保模型在未量化的情况下能够达到满意的性能。

2024-03-18 21:40:35 524

原创 int8量化和int16量化的区别

综上所述,选择Int8量化还是Int16量化取决于具体的应用场景和对模型性能、精度和资源需求的权衡。

2024-03-15 15:10:21 1300

原创 神经网络量化

神经网络量化通过将模型参数和激活值从高精度表示(例如32位浮点数)转换为低精度表示(例如8位整数或更低)来解决这个问题。量化可以分为两种类型:权重量化和激活量化。权重量化是将神经网络中的权重参数转换为低精度表示,而激活量化则是将神经网络的激活值(即中间层的输出)转换为低精度表示。:将参数和激活值量化到非对称范围内,例如[-128, 127],可以更好地适应数据的分布情况。:将参数和激活值表示为浮点数,但采用较低的精度,如16位浮点数或更低。:将参数和激活值表示为固定位宽的整数,通常采用8位或更低的精度。

2024-03-15 15:06:44 980

原创 在训练过程中,如何动态调整哪些层被冻结或解冻

这可以通过编写一个自定义的训练循环或者利用深度学习框架提供的回调函数(callbacks)来实现。在训练过程中,你可以根据需要在特定epoch调用这些方法来动态调整模型的冻结状态。在训练过程中动态调整哪些层被冻结或解冻通常涉及到在训练的不同阶段改变模型参数的。

2024-03-01 11:14:38 563

原创 PythonOpenCV随机粘贴图像

创建ROI(Region of Interest),确保不超出图像2的范围。# 创建掩码,黑色部分为0,非黑色部分为255。# 将合并后的图像放回图像2的相应位置。# 获取图像1中有效区域的高度和宽度。# 将image1转换为灰度图像。# 获取图像1中有效区域的前景。# 获取图像2的高度和宽度。# 创建ROI的反向掩码。

2024-02-29 13:48:34 922

原创 深入理解数据结构与算法基础知识

在计算机科学领域,数据结构和算法是构建高效、可维护软件的基石。本文将介绍数据结构和算法的基础知识,帮助读者建立起对这些重要概念的理解。

2024-02-29 13:47:09 380

原创 超分和去噪什么区别

因此,超分辨率和去噪都是图像处理中常见的技术,但它们的目标和方法不同。超分辨率旨在增加图像的清晰度和细节,而去噪则旨在减少图像中的噪声,提高图像的质量。

2024-02-26 09:46:04 668

原创 Python实现对图像加噪(高斯噪声 椒盐噪声)

展示如何给图像叠加不同等级的椒盐噪声和高斯噪声的代码,相应的叠加噪声的已编为对应的类,可实例化使用。以下主要展示自己编写的:#代码中的noisef为信号等级,例如我需要0.7的噪声,传入参数我传入的是1-0.7"""增加椒盐噪声Args:p (float): 概率值,依概率执行该操作"""self.p = p"""Args:Returns:"""img_[mask == 1] = 255 # 盐噪声。

2024-02-26 09:45:19 3010

原创 深度学习算法工程师面试常见问题及解答

准备这些问题时,不仅要理解概念,还要能够通过实际代码示例来展示你的技能。此外,面试中可能会包含一些编程练习或现场编码测试,以评估你的实际编程能力。深度学习算法工程师的面试通常涉及对基础知识、编程技能、机器学习理论和实践能力的全面考察。

2024-02-22 20:16:12 604

原创 YOLO v9 出世!

它可以用来获取完整的信息,使得从零开始训练的模型能够比使用大型数据集预训练的现有先进模型取得更好的结果,对比结果如图1所示。作者提出了可编程梯度信息(PGI)的概念,以应对深度网络实现多重目标所需的各种变化。PGI可以为目标任务提供完整的输入信息以计算目标函数,从而获得可靠的梯度信息以更新网络权重。当今的深度学习方法专注于如何设计最合适的目标函数,以使模型的预测结果能够尽可能地接近真实值。同时,还需要设计一种适当的架构,以便为预测获取足够的信息。GELAN的架构证实了PGI在轻量级模型上取得了优越的结果。

2024-02-22 20:12:17 446

原创 微信小程序开发教程:

准备工作项目结构编写代码预览和调试。

2024-02-21 21:59:59 549

原创 时域去噪:从理论到实践

时域去噪是指在时间维度上对信号进行处理,以去除或减少噪声成分。与频域去噪不同,时域去噪直接作用于信号的原始时间序列,不涉及频率变换。时域去噪的目标是保留信号的有用部分,同时尽可能多地消除噪声。

2024-02-21 21:58:58 1069

原创 百度RT-DETR :基于视觉变换器的实时物体检测器

实时检测转换器 (RT-DETR) 由百度开发,是一种尖端的端到端物体检测器,可在保持高精度的同时提供实时性能。它利用视觉转换器(ViT)的强大功能,通过解耦尺度内交互和跨尺度融合,高效处理多尺度特征。RT-DETR 具有很强的适应性,支持使用不同的解码器层灵活调整推理速度,无需重新训练。该模型在加速后端(如使用TensorRT 的 CUDA)上表现出色,优于许多其他实时物体检测器。RT-DETR 模型架构图显示了作为编码器输入的主干{S3、S4、S5}的最后三个阶段。

2024-02-20 16:44:32 490

原创 YOLO-世界(实时开放词汇对象检测)

YOLO-传统的开放式词汇检测模型通常依赖于需要大量计算资源的繁琐变形器模型。这些模型对预定义对象类别的依赖也限制了它们在动态场景中的实用性。YOLO-World利用开放式词汇检测功能重振了YOLOv8 框架,采用了视觉语言建模和在大量数据集上进行预训练的方法,能够以无与伦比的效率在零拍摄场景中出色地识别大量物体。效率:通过关注相关对象、减少计算开销和加快推理速度,简化检测过程。灵活性:可使模型轻松适应新的或特殊的检测任务,而无需进行大量的再培训或数据收集。简单。

2024-02-20 16:40:39 1483 1

原创 excel如何指定求和

在Excel中,你可以使用函数来实现动态求和,使得当指定行的数值更新后,和也随之更新。具体来说,你可以使用SUM函数结合一些动态的引用方法。以下是一种实现方式:假设你要对A列(从A1到A10,以示例)中的数值进行求和,并且希望求和结果随着A列中数值的变化而动态更新。你可以使用以下公式:这个公式将对A1到A10单元格范围内的数值进行求和。但是,如果你想要使求和结果与A列中的数值动态更新,可以使用表格引用(Table Reference)或者命名范围(Named Range)。

2024-02-19 13:28:30 1184

原创 处理目标检测中的类别不均衡问题

处理目标检测中的类别不均衡问题是提高模型性能的关键一步。通过采用过采样、欠采样、生成合成数据、类别加权等方法,可以有效地解决类别不均衡问题,提高模型对各个类别的检测能力。在实际应用中,可以根据具体情况选择合适的方法,以获得最佳的性能表现。

2024-02-19 13:27:35 919

原创 探索OpenAI首个AI视频模型Sora:技术创新与应用前景

综上所述,Sora是一项令人兴奋的技术创新,代表了人工智能领域在视频生成和理解方面的前沿进展。其出现将为各个领域带来新的可能性和机遇,同时也需要我们审慎对待其潜在的影响和挑战。期待Sora在未来的发展中,为人类社会带来更多的创新和进步。这篇博客试图通过对OpenAI首个AI视频模型Sora的技术创新和应用前景的探讨,向读者展示了其重要性和潜力。

2024-02-19 13:19:17 578

原创 多目标检测与跟踪技术详解

每一种算法都有其优势和局限性,选择合适的算法通常取决于具体的应用场景和性能要求。此外,由于多目标跟踪面临的挑战,如遮挡、变形、光照变化等问题,研究人员仍在不断探索新的方法来提高跟踪的准确性和实时性。在未来,多目标检测与跟踪技术有望在智能监控、自动驾驶等领域发挥更大的作用。重新回答||

2024-02-17 23:05:33 691

原创 算法工程师面试必备:常见面试题总结

在准备算法工程师的面试时,了解常见的面试题是非常重要的。本文将为大家总结一些算法工程师面试中常见的问题,帮助大家在面试中取得好成绩。以上就是算法工程师面试中常见的一些问题,希望大家在面试前能够熟练掌握这些知识点,取得好成绩。1.数据结构和算法基础。

2024-02-17 23:01:48 1138 1

原创 一阶段目标检测算法:流程详解

一阶段目标检测算法通过简化流程,直接在单次前向传播中完成分类和定位任务,实现了较高的处理速度和实时性。这使得一阶段检测算法在许多实时应用场景中具有广泛的适用性。希望本文能够帮助读者深入了解一阶段目标检测算法的流程和原理。在选择目标检测算法时,应根据具体需求权衡速度和准确性,以选择最适合的算法。

2024-02-16 10:55:53 2155 1

原创 深入解析:二阶段目标检测算法流程详解

二阶段目标检测算法通过先提取候选区域,再对每个区域进行分类和定位的方式,实现了较高的检测准确率。虽然这种方法在速度上相对较慢,但其准确性使其在许多应用场景中成为首选算法。希望本文能够帮助读者深入了解二阶段目标检测算法的流程和原理。在实际应用中,根据具体需求选择合适的目标检测算法至关重要。

2024-02-16 10:54:07 1304 1

原创 目标检测算法:一阶段与二阶段的区别详解

综上所述,二阶段检测算法在准确率上表现更好,但在处理速度上较慢;而一阶段检测算法则在速度上具有优势,但可能牺牲一定的准确率。在选择适合的目标检测算法时,需要根据具体的应用场景和性能要求来做出决策。希望本文能够帮助读者更好地理解目标检测的一阶段和二阶段算法之间的区别,为实际项目选择合适的算法提供参考。

2024-02-16 10:52:15 4586 1

原创 相机的视场角

具体来说,视场角是由镜头为顶点,以被测目标的物像可通过镜头看到的最大范围的两条边缘构成的夹角。在摄影和光学领域,视场角是一个非常重要的参数,因为它直接影响到成像的场景大小和物体在图像中的比例。视场角的大小受到镜头焦距和图像传感器大小的影响。焦距越短,视场角通常越大,能够捕捉到更宽广的场景;反之,焦距越长,视场角越小,能够拍摄到更远的物体,但视野范围较窄。此外,视场角分为物方视场角和像方视场角。物方视场角是指镜头前方实际场景中能够被镜头捕获的范围,而像方视场角则是指这些场景在图像传感器上所呈现的范围。

2024-02-07 10:53:42 799 1

原创 第十天:C++测试和调试

在C++的学习旅程中,我们已经涵盖了从基础到高级的诸多概念。第十天将是这个系列教程的最后一天,我们将把重点放在如何将学到的知识综合运用到实际开发中去。这些知识将帮助你更好地融入实际的开发工作,提升你的工程效率和代码质量。通过今天的内容,你将能够了解如何将C++代码从编辑器带到生产环境,并且确保这个过程是高效、可靠且易于管理的。你还将学习到如何确保代码的质量,并通过适当的工具和技术来提升整个开发团队的协作效率。让我们开始吧,将这些实践知识融入到你的日常开发工作中,成为一个全方位的C++开发者!

2024-02-06 09:29:38 375 1

车道线检测最新论文,,方法,综述

车道线检测最新论文,,方法,综述

2024-09-02

算法工程师进阶思维导图

算法工程师进阶思维导图

2024-01-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除