DGA系列之XGBoost(一)

这篇博客是对书中《web安全深度学习入门》DGA域名检测XGBoost的代码进行复现与解释。代码大部分与之前我发布的朴素贝叶斯算法的代码差不多。

实验步骤如下

	1. 获取样本数据
    2. 提取特征
    3. 将样本划分为训练集和测试集
    4. 使用XGBoost算法在训练集上训练,获得模型数据
    5. 使用模型数据在测试集上进行测试
    6. 验证XGBoost算法的结果
获取样本数据

在这里插入图片描述
老规矩,加载正常样本和黑样本。

提取特征与划分数据集

(一)提取统计特征
在这里插入图片描述
以每个域名元音字母个数,不重复字符个数,数字个数三个特征来标记一个域名,将其向量化
在这里插入图片描述
这个代码和叶贝斯的一模一样,看不懂的可以看我的博客DGA之叶贝斯(一)

(二)提取2-Gram
在这里插入图片描述

训练、预测和验证XGBoost

在这里插入图片描述

验证结果

(一) 统计特征的XGBoost
在这里插入图片描述
在这里插入图片描述

(二)2-Gram特征的XGBoost
在这里插入图片描述
在这里插入图片描述
源代码在GitHub上:xb_dga.py

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值