Sentinel限流、整形、熔断降级介绍

名词解释

集群模式

集群流控中共有两种身份:

  • Token Client:集群流控客户端,用于向所属 Token Server 通信请求 token。集群限流服务端会返回给客户端结果,决定是否限流。
  • Token Server:即集群流控服务端,处理来自 Token Client 的请求,根据配置的集群规则判断是否应该发放 token(是否允许通过)。

Sentinel 集群限流服务端有两种启动方式:

  • 独立模式(Alone),即作为独立的 token server 进程启动,独立部署,隔离性好,但是需要额外的部署操作。独立模式适合作为 Global Rate Limiter 给集群提供流控服务。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M2RA9DGL-1597613153374)(https://user-images.githubusercontent.com/9434884/50463606-c3d26c00-09c7-11e9-8373-1c27e2408f8b.png)]

  • 嵌入模式(Embedded),即作为内置的 token server 与服务在同一进程中启动。在此模式下,集群中各个实例都是对等的,token server 和 client 可以随时进行转变,因此无需单独部署,灵活性比较好。但是隔离性不佳,需要限制 token server 的总 QPS,防止影响应用本身。嵌入模式适合某个应用集群内部的流控。

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GfoKFliu-1597613153376)(https://user-images.githubusercontent.com/9434884/50463600-b7e6aa00-09c7-11e9-9580-6919f0d0a8a4.png)]

规则种类

功能介绍

流量控制

(flow control),其原理是监控应用流量的 QPS 或并发线程数等指标,当达到指定的阈值时对流量进行控制,以避免被瞬时的流量高峰冲垮,从而保障应用的高可用性。

流量控制

  • resource:资源名,即限流规则的作用对象

  • count: 限流阈值

  • grade: 限流阈值类型(QPS 或并发线程数(ThreadDemo))

  • limitApp: 流控针对的调用来源,若为 default 则不区分调用来源

  • strategy: 调用关系限流策略

  • controlBehavior: 流量控制效果(直接拒绝、Warm Up、匀速排队)

    • 直接拒绝RuleConstant.CONTROL_BEHAVIOR_DEFAULT)方式是默认的流量控制方式,当QPS超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出FlowException。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。具体的例子参见 FlowQpsDemo。 令牌原理

    • Warm UpRuleConstant.CONTROL_BEHAVIOR_WARM_UP)方式,即预热/冷启动方式。当系统长期处于低水位的情况下,当流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮。通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。详细文档可以参考 流量控制 - Warm Up 文档,具体的例子可以参见 WarmUpFlowDemo。 低水位流量缓慢增加

    • 匀速排队RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER)方式会严格控制请求通过的间隔时间,也即是让请求以均匀的速度通过,对应的是漏桶算法。详细文档可以参考 流量控制 - 匀速器模式,具体的例子可以参见 PaceFlowDemo。 漏桶原理

熔断降级

除了流量控制以外,对调用链路中不稳定的资源进行熔断降级也是保障高可用的重要措施之一。由于调用关系的复杂性,如果调用链路中的某个资源不稳定,最终会导致请求发生堆积。Sentinel 熔断降级会在调用链路中某个资源出现不稳定状态时(例如调用超时或异常比例升高),对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联错误。当资源被降级后,在接下来的降级时间窗口之内,对该资源的调用都自动熔断(默认行为是抛出 DegradeException)。

RT Degrade demo

熔断降级

  • 平均响应时间 (DEGRADE_GRADE_RT):当 1s 内持续进入 N 个请求,对应时刻的平均响应时间(秒级)均超过阈值(count,以 ms 为单位),那么在接下的时间窗口(DegradeRule 中的 timeWindow,以 s 为单位)之内,对这个方法的调用都会自动地熔断(抛出 DegradeException)。注意 Sentinel 默认统计的 RT 上限是 4900 ms,超出此阈值的都会算作 4900 ms,若需要变更此上限可以通过启动配置项 -Dcsp.sentinel.statistic.max.rt=xxx 来配置。
  • 异常比例 (DEGRADE_GRADE_EXCEPTION_RATIO):当资源的每秒请求量 >= N(可配置),并且每秒异常总数占通过量的比值超过阈值(DegradeRule 中的 count)之后,资源进入降级状态,即在接下的时间窗口(DegradeRule 中的 timeWindow,以 s 为单位)之内,对这个方法的调用都会自动地返回。异常比率的阈值范围是 [0.0, 1.0],代表 0% - 100%。
  • 异常数 (DEGRADE_GRADE_EXCEPTION_COUNT):当资源近 1 分钟的异常数目超过阈值之后会进行熔断。注意由于统计时间窗口是分钟级别的,若 timeWindow 小于 60s,则结束熔断状态后仍可能再进入熔断状态。
系统保护

系统保护规则是从应用级别的入口流量进行控制,从单台机器的 load、CPU 使用率、平均 RT、入口 QPS 和并发线程数等几个维度监控应用指标,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。

系统保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量生效。入口流量指的是进入应用的流量(EntryType.IN),比如 Web 服务或 Dubbo 服务端接收的请求,都属于入口流量。

SystemGuardDemo

系统自适应限流

  • Load 自适应(仅对 Linux/Unix-like 机器生效):系统的 load1 作为启发指标,进行自适应系统保护。当系统 load1 超过设定的启发值,且系统当前的并发线程数超过估算的系统容量时才会触发系统保护(BBR 阶段)。系统容量由系统的 maxQps * minRt 估算得出。设定参考值一般是 CPU cores * 2.5
  • CPU usage(1.5.0+ 版本):当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0-1.0),比较灵敏。
  • 平均 RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
  • 并发线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
  • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护。
访问控制

很多时候,我们需要根据调用来源来判断该次请求是否允许放行,这时候可以使用 Sentinel 的来源访问控制(黑白名单控制)的功能。来源访问控制根据资源的请求来源(origin)限制资源是否通过,若配置白名单则只有请求来源位于白名单内时才可通过;若配置黑名单则请求来源位于黑名单时不通过,其余的请求通过。

调用方信息通过 ContextUtil.enter(resourceName, origin) 方法中的 origin 参数传入。

AuthorityDemo

黑白名单控制

  • resource:资源名,即限流规则的作用对象。
  • limitApp:对应的黑名单/白名单,不同 origin 用 , 分隔,如 appA,appB
  • strategy:限制模式,AUTHORITY_WHITE 为白名单模式,AUTHORITY_BLACK 为黑名单模式,默认为白名单模式。
热点规则

热点即经常访问的数据。很多时候我们希望统计某个热点数据中访问频次最高的 Top K 数据,并对其访问进行限制。比如:

  • 商品 ID 为参数,统计一段时间内最常购买的商品 ID 并进行限制
  • 用户 ID 为参数,针对一段时间内频繁访问的用户 ID 进行限制

sentinel-demo-parameter-flow-control

热点参数限流

热点参数规则(ParamFlowRule)类似于流量控制规则(FlowRule):

属性说明默认值
resource资源名,必填
count限流阈值,必填
grade限流模式QPS 模式
durationInSec统计窗口时间长度(单位为秒),1.6.0 版本开始支持1s
controlBehavior流控效果(支持快速失败和匀速排队模式),1.6.0 版本开始支持快速失败
maxQueueingTimeMs最大排队等待时长(仅在匀速排队模式生效),1.6.0 版本开始支持0ms
paramIdx热点参数的索引,必填,对应 SphU.entry(xxx, args) 中的参数索引位置
paramFlowItemList参数例外项,可以针对指定的参数值单独设置限流阈值,不受前面 count 阈值的限制。仅支持基本类型和字符串类型
clusterMode是否是集群参数流控规则false
clusterConfig集群流控相关配置
网关流控

用户可以通过 GatewayRuleManager.loadRules(rules) 手动加载网关规则,或通过 GatewayRuleManager.register2Property(property) 注册动态规则源动态推送(推荐方式)。

网关流控

集群流控

集群流控

名词介绍
  • Token Client:集群流控客户端,用于向所属 Token Server 通信请求 token。集群限流服务端会返回给客户端结果,决定是否限流。
  • Token Server:即集群流控服务端,处理来自 Token Client 的请求,根据配置的集群规则判断是否应该发放 token(是否允许通过)。
独立模式

独立模式(Alone),即作为独立的 token server 进程启动,独立部署,隔离性好,但是需要额外的部署操作。独立模式适合作为 Global Rate Limiter 给集群提供流控服务。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6tcemr0Y-1597613153377)(https://user-images.githubusercontent.com/9434884/50463606-c3d26c00-09c7-11e9-8373-1c27e2408f8b.png)]

嵌入模式

嵌入模式(Embedded),即作为内置的 token server 与服务在同一进程中启动。在此模式下,集群中各个实例都是对等的,token server 和 client 可以随时进行转变,因此无需单独部署,灵活性比较好。但是隔离性不佳,需要限制 token server 的总 QPS,防止影响应用本身。嵌入模式适合某个应用集群内部的流控。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g5DOlI8D-1597613153378)(https://user-images.githubusercontent.com/9434884/50463600-b7e6aa00-09c7-11e9-9580-6919f0d0a8a4.png)]

动态规则架构

动态规则

API模式

Sentinel Dashboard 通过客户端自带的规则 API来实时查询和更改内存中的规则。

DataSource模式

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9ELBNJYL-1597613153379)(https://user-images.githubusercontent.com/9434884/45406233-645e8380-b698-11e8-8199-0c917403238f.png)]

DataSource 扩展常见的实现方式有:
  • 拉模式:客户端主动向某个规则管理中心定期轮询拉取规则,这个规则中心可以是 RDBMS、文件,甚至是 VCS 等。这样做的方式是简单,缺点是无法及时获取变更;
  • 推模式:规则中心统一推送,客户端通过注册监听器的方式时刻监听变化,比如使用 Nacos、Zookeeper 等配置中心。这种方式有更好的实时性和一致性保证。
Sentinel 目前支持以下数据源扩展:

gateway 动态路由配置参考文档

  • 待补充!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值