数据结构的几种解题法

本文介绍了数据结构解题的常见方法:穷举法适用于规模较小的问题;分治法通过递归解决相似子问题,如快速排序;动态规划解决具有最优子结构和子问题重叠的问题,如杨辉三角;贪心法通过局部最优选择求全局最优解,例如找零钱问题。每种方法都有其适用场景和效率分析。
摘要由CSDN通过智能技术生成

常用解题的方法有穷举法,分治法,动态规划法,贪心法,回溯法,

1.穷举法

穷举法就是一个不漏的测试所有的可能结果是否符合要求,也称为蛮力法,暴力破解法,是求解问题的规模较小时最直接的解题方法。但求解问题规模较大时,难度较大,数据结构较复杂时,无法穷举问题的所有解,或者时间超时。

如:查找数组中是否指定元素;

 public  Boolean qingju(int [] arr,int  target){  
        for (int i = 0; i < arr.length; i++) {
            if(arr[i]==target){
                return  true;
            }
        }
        return false;
    }

时间复杂度为O(n),把所有元素都操作一遍

2.分治法

分治法(Divide  and  Conquer)采用分而治之,逐个解决的策略。采用分治法求解的问题必须具有两个性质:

  1. 最优子结构,指一个问题可以分为若干个规模较小的子问题,各子问题与原问题类型相同;问题的规模缩小到一定程度能够直接解决;该问题的解包含着其子问题的解,将子问题的解合并最终能够得到原问题的解
  2. 子问题独立,指问题所分解的子问题是相互独立的,没有重叠部分。

分支法将一个难以解决的大问题分解成若干个规模较小的子问题,子问题与原问题类型相同,则求解算法相同

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值