数列与级数(中)

数列与级数

级数

如果没有相反的声明,所考虑的一切序列和级数都是复数值的

定义 3.21 设有序列 { a n } \left\{ a_{n} \right\} {an},我们用
∑ n = p q a n ( p ≤ q ) \sum_{n=p}^{q}a_{n} \left( p \le q \right) n=pqan(pq)
表示和 a p + a p + 1 + ⋯ + a q a_p + a_{p+1} + \cdots + a_{q} ap+ap+1++aq。联系着 { a n } \left\{ a_{n} \right\} {an},作成序列 { s n } \left\{ s_{n} \right\} {sn},其中
s n = ∑ k = 1 n a k s_{n} = \sum_{k=1}^{n}a_{k} sn=k=1nak
我们也用
a 1 + a 2 + a 3 + ⋯ a_{1} + a_{2}+a_{3}+\cdots a1+a2+a3+
作为 { s n } \left\{ s_{n} \right\} {sn}的符号表达式,或者简单地记作
∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_{n} n=1an
这个叫做无穷级数(infinite series),或只说级数(series), s n s_{n} sn叫做这级数的部分和(partial sums of the series),如果 s n s_{n} sn收敛于 s s s,我们就说级数收敛,并且记作
∑ n = 1 ∞ a n = s \sum_{n=1}^{\infty}a_{n}=s n=1an=s
s s s叫做这级数的和;但是必须清楚地理解, s s s是(部分)和的序列的极限 ,而不是单用加法得到的
‌‌‌‌  如果 s n s_n sn发散,就说级数发散
有时为了符号上的方便,我们也考虑形式像
∑ n = 0 ∞ a n \sum_{n=0}^{\infty}a_{n} n=0an
的级数,为了不致于引起误解,或者区别无关紧要时,也常常只写 ∑ a n \sum a_{n} an来代替它们

显然,关于序列的每个定理都能按级数的语言来描述(令 a 1 = s 1 a_{1}=s_{1} a1=s1,当 n > 1 n>1 n>1时, a n = s n − s n − 1 a_{n}= s_{n}-s_{n-1} an=snsn1)反过来也是如此。虽然如此,一并考虑着两个概念还是有溢出的

Cauchy准则(定理3.11)可以按以下形式重新叙述:
定理 3.22 ∑ a n \sum a_{n} an收敛,当且仅当,对于任意的 ε > 0 \varepsilon >0 ε>0,存在正整数 N N N,使得 m ≥ n ≥ N m \ge n \ge N mnN
∣ ∑ k = n m a k ∣ ≤ ε \left| \sum_{k=n}^m a_k\right| \le \varepsilon k=nmak ε
特别地,当 n = m n=m n=m
∣ a n ∣ ≤ ε ( n ≥ N ) \left| a_{n} \right| \le \varepsilon \left( n \ge N \right) anε(nN)
换句话说:
定理 3.23 如果 ∑ a n \sum a_{n} an收敛,那么 lim ⁡ n → ∞ a n = 0 \lim\limits_{ n \to \infty } a_{n} = 0 nliman=0
但是如果 a n → 0 a_{n} \to 0 an0,不能保证 ∑ a n \sum a_{n} an收敛,例如,调和级数
∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty} \frac{1}{n} n=1n1
发散;

定理 3.24 各项不是负数的级数收敛,当且仅当它的部分和构成有界数列
(“不是负数”便一定是实数)

定理(比较审敛法(comparison test) ) 3.25
(a)如果 N 0 N_{0} N0是某个固定的正整数,当 n ≥ N 0 n \ge N_{0} nN0时, ∣ a n ∣ ≤ c n \left| a_{n} \right| \le c_{n} ancn而且 ∑ c n \sum c_{n} cn收敛,那么级数 ∑ a n \sum a_{n} an也收敛
(b)如果当 n ≥ N 0 n \ge N_{0} nN0时, a n ≥ d n ≥ 0 a_{n} \ge d_{n}\ge 0 andn0而且 ∑ d n \sum d_{n} dn发散,那么 ∑ a n \sum a_{n} an也发散
注意,检验法(b)只能用于非负的级数

证明:
根据Cauchy准则,给定了 ε > 0 \varepsilon >0 ε>0,存在着 N ≥ N 0 N \ge N_{0} NN0,能使 m ≥ n ≥ N m \ge n \ge N mnN时成立
∑ k = n m c k ≤ ε \sum_{k=n}^{m}c_{k} \le \varepsilon k=nmckε
所以
∣ ∑ k = n m a k ∣ ≤ ∑ k = n m ∣ a k ∣ ≤ ∑ k = n m c k ≤ ε \left| \sum_{k=n}^{m}a_{k} \right| \le \sum_{k=n}^{m} \left| a_{k} \right| \le \sum_{k=n}^{m}c_{k} \le \varepsilon k=nmak k=nmakk=nmckε
随之也就得到了(a)

其次(b)可以由(a)推出来,因为,如果 ∑ a n \sum a_{n} an收敛,那么 ∑ d n \sum d_{n} dn也收敛
(或者用定理3.24)

非负项级数

定理 3.26 如果 0 ≤ x < 1 0 \le x < 1 0x<1,那么
∑ n = 0 ∞ x n = 1 1 − x \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} n=0xn=1x1
如果 x ≥ 1 x \ge 1 x1,这级数就发散
证明
如果 x ≠ 1 x \neq 1 x=1
s n = ∑ k = 0 n x k = 1 − x n + 1 1 − x s_{n} = \sum_{k=0}^{n}x^k = \frac{1-x^{n+1}}{1-x} sn=k=0nxk=1x1xn+1
n → ∞ n \to \infty n,就得到结论,当 x = 1 x = 1 x=1时,得到
1 + 1 + ⋯ 1+1+\cdots 1+1+
显然发散

定理 3.27 假定 a 1 ≥ a 2 ≥ a 3 ≥ ⋯ ≥ 0 a_{1} \ge a_{2} \ge a_{3} \ge \cdots \ge 0 a1a2a30,那么,级数 ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_{n} n=1an收敛,当且仅当级数
∑ k = 0 ∞ 2 k a 2 k = a 1 + 2 a 2 + 4 a 4 + 8 a 8 + ⋯ \sum_{k=0}^{\infty}2^k a_{2^k} = a_{1} + 2 a_{2} + 4 a_{4}+8 a_{8} + \cdots k=02ka2k=a1+2a2+4a4+8a8+
收敛
证明:
根据定理3.24,现在要证明部分和有界
s n = a 1 + a 2 + ⋯ + a n t k = a 1 + 2 a 2 + ⋯ + 2 k a 2 k \begin{aligned} s_{n} &= a_{1} + a_{2} + \cdots + a_{n}\\ t_{k} &= a_{1} + 2a_{2} + \cdots + 2^k a_{2^k} \end{aligned} sntk=a1+a2++an=a1+2a2++2ka2k
n < 2 k n < 2^k n<2k时,
s n ≤ a 1 + ( a 2 + a 3 ) + ⋯ + ( a 2 k + ⋯ + a 2 k + 1 − 1 ) ≤ a 1 + 2 a 2 + ⋯ + 2 k a 2 k = t k \begin{aligned} s_{n} &\le a_{1} + \left( a_{2} + a_{3} \right) + \cdots + \left( a_{2^k} + \cdots + a_{2^{k+1} - 1} \right) \\ &\le a_{1} + 2a_{2} + \cdots + 2^k a_{2^k}\\ &= t_{k} \end{aligned} sna1+(a2+a3)++(a2k++a2k+11)a1+2a2++2ka2k=tk
因此
s n ≤ t k s_{n}\le t_{k} sntk
另一方面,当 n > 2 k n > 2^k n>2k
s n ≥ a 1 + a 2 + ( a 3 + a 4 ) + ⋯ + ( a 2 k − 1 + 1 + ⋯ + a 2 k ) ≤ 1 2 a 1 + a 2 + 2 a 4 + ⋯ + 2 k − 1 a 2 k = 1 2 t k \begin{aligned} s_{n} &\ge a_{1} + a_{2} + \left( a_{3} + a_{4} \right) + \cdots + \left( a_{2^{k-1} + 1} + \cdots + a_{2^{k}} \right) \\ &\le \frac{1}{2} a_{1} + a_{2} + 2a_{4}+ \cdots + 2^{k-1} a_{2^k}\\ &= \frac{1}{2} t_{k} \end{aligned} sna1+a2+(a3+a4)++(a2k1+1++a2k)21a1+a2+2a4++2k1a2k=21tk
因此
2 s n ≥ t n 2s_{n} \ge t_{n} 2sntn
因此, { s n } \left\{ s_{n} \right\} {sn} { t k } \left\{ t_{k} \right\} {tk},或者同时有界,或者同时无界

定理 3.28 如果 p > 1 p > 1 p>1 ∑ 1 n p \sum \frac{1}{n^p} np1收敛,如果 p ≤ 1 p \le 1 p1,它就发散
证明:
如果 p ≤ 0 p \le 0 p0,发散性由定理3.23得出
如果 p > 0 p>0 p>0,用定理3.27,这就要看级数
∑ k = 0 ∞ 2 k 1 2 k p = ∑ k = 0 ∞ 2 k ( 1 − p ) \sum_{k=0}^{\infty} 2^k \frac{1}{2^{kp}} = \sum_{k=0}^{\infty}2^{k \left( 1-p \right) } k=02k2kp1=k=02k(1p)
然而,当且仅当 1 − p < 0 1-p <0 1p<0时才能够 2 1 − p < 1 2^{1-p} < 1 21p<1,再与几何级数比较以下(在定理3.26中取 x = 2 1 − p x=2^{1-p} x=21p)就把定理推出来了

定理 3.29 如果 p > 1 p > 1 p>1
∑ n = 2 ∞ 1 n ( log ⁡ n ) p \sum_{n = 2}^{\infty} \frac{1}{n\left( \log n \right)^p} n=2n(logn)p1
就收敛;如果 p ≤ 1 p \le 1 p1,这级数就发散
证明:
{ 1 n log ⁡ n } \left\{ \frac{1}{n\log n} \right\} {nlogn1}单调递减。
∑ k = 1 ∞ 2 k 1 2 k ( log ⁡ 2 k ) p = ∑ k = 1 ∞ 1 ( k log ⁡ 2 ) p = 1 ( log ⁡ 2 ) p ∑ k = 1 ∞ 1 k p \sum_{k=1}^{\infty}2^k \frac{1}{2^k \left( \log 2^k \right)^p }=\sum_{k=1}^{\infty} \frac{1}{\left( k\log 2 \right)^p}=\frac{1}{\left( \log 2 \right)^p}\sum_{k=1}^{\infty} \frac{1}{k^p} k=12k2k(log2k)p1=k=1(klog2)p1=(log2)p1k=1kp1
由定理3.28就可以推出

这种方法显然可以继续进行,例如
∑ n = 3 ∞ 1 n log ⁡ n log ⁡ log ⁡ n \sum_{n=3}^{\infty} \frac{1}{n \log n\log\log n} n=3nlognloglogn1
发散,然而级数
∑ k = 3 ∞ 1 n log ⁡ n ( log ⁡ log ⁡ n ) 2 \sum_{k=3}^{\infty} \frac{1}{n\log n \left( \log\log n \right)^{2}} k=3nlogn(loglogn)21
收敛

数e

定义 3.30 e = ∑ n = 0 ∞ 1 n ! e = \sum_{n=0}^{\infty} \frac{1}{n!} e=n=0n!1
这里 n ≥ 1 n \ge 1 n1时, n ! = 1 ⋅ 2 ⋅ 3 ⋯ n n! = 1\cdot 2 \cdot 3 \cdots n n!=123n;而 0 ! = 1 0!= 1 0!=1

s n = 1 + 1 + 1 1 ⋅ 2 + 1 1 ⋅ 2 ⋅ 3 + ⋯ + 1 1 ⋅ 2 ⋯ n < 1 + 1 + 1 2 + 1 2 2 + ⋯ + 1 2 n − 1 < 3 \begin{aligned} s_{n} &= 1 + 1 + \frac{1}{1 \cdot 2}+ \frac{1}{1 \cdot 2 \cdot 3}+ \cdots + \frac{1}{1 \cdot 2 \cdots n}\\ & < 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots + \frac{1}{2^{n-1}}\\ & < 3 \end{aligned} sn=1+1+121+1231++12n1<1+1+21+221++2n11<3
所以级数收敛

定理 3.31 lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim\limits_{ n \to \infty } \left( 1 + \frac{1}{n} \right)^n = e nlim(1+n1)n=e
证明:

s n = ∑ k = 0 n 1 k ! , t n = ( 1 + 1 n ) n s_{n} = \sum_{k=0}^{n} \frac{1}{k!}, \quad t_{n} = \left( 1 + \frac{1}{n} \right)^n sn=k=0nk!1,tn=(1+n1)n
根据二项式定理
t n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + 1 3 ! ( 1 − 1 n ) ( 1 − 2 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) \begin{aligned} t_{n} = &1 + 1 + \frac{1}{2!}\left( 1- \frac{1}{n} \right) + \frac{1}{3!}\left( 1- \frac{1}{n} \right) \left( 1- \frac{2}{n} \right) +\cdots\\ &+ \frac{1}{n!} \left( 1 - \frac{1}{n} \right)\left( 1- \frac{2}{n} \right)\cdots \left( 1 - \frac{n-1}{n} \right) \end{aligned} tn=1+1+2!1(1n1)+3!1(1n1)(1n2)++n!1(1n1)(1n2)(1nn1)
因此 t n ≤ s n t_{n} \le s_{n} tnsn,根据定理3.19
lim sup ⁡ n → ∞ t n ≤ e \limsup_{n \to \infty} t_{n} \le e nlimsuptne
其次, 如果 n ≥ m n \ge m nm,那么
t n ≥ 1 + 1 + 1 2 ! ( 1 − 1 n ) + ⋯ + + 1 m ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − m − 1 n ) t_{n} \ge 1 + 1 + \frac{1}{2!}\left( 1- \frac{1}{n} \right) + \cdots + + \frac{1}{m!} \left( 1 - \frac{1}{n} \right)\left( 1- \frac{2}{n} \right)\cdots \left( 1 - \frac{m-1}{n} \right) tn1+1+2!1(1n1)+++m!1(1n1)(1n2)(1nm1)
固定了 m m m并令 n → ∞ n \to \infty n,我们得到
lim inf ⁡ n → ∞ t n ≥ 1 + 1 + 1 2 ! + ⋯ + 1 m ! \liminf_{n\to \infty} t_{n} \ge 1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{m!} nliminftn1+1+2!1++m!1
因此
s m ≤ lim inf ⁡ n → ∞ t n s_{m} \le \liminf_{n\to \infty} t_{n} smnliminftn
m → ∞ m \to \infty m,最终得到
e ≤ lim inf ⁡ n → ∞ t n e \le \liminf_{n\to \infty}t_{n} enliminftn
得证

级数 ∑ 1 n ! \sum \frac{1}{n!} n!1的收敛速度可以估计如下:设 s n s_{n} sn的意义就像上边那样,于是
e − s n = 1 ( n + 1 ) ! + 1 ( n + 2 ) ! + ⋯ < 1 ( n + 1 ) ! { 1 + 1 n + 1 + 1 ( n + 1 ) 2 + ⋯   } = 1 n ! n \begin{aligned} e - s_{n} &= \frac{1}{\left( n+1 \right)!}+ \frac{1}{\left( n+2 \right)!}+\cdots \\ &< \frac{1}{\left( n+1 \right)!}\left\{ 1 + \frac{1}{n+1}+ \frac{1}{\left( n+1 \right)^2}+\cdots \right\} \\ &=\frac{1}{n! n} \end{aligned} esn=(n+1)!1+(n+2)!1+<(n+1)!1{1+n+11+(n+1)21+}=n!n1
因此
0 < e − s n < 1 n ! n 0 < e - s_{n} < \frac{1}{n!n} 0<esn<n!n1

定理 3.32 数e是无理数
证明: 假定e是有理数,那么 e = p q e = \frac{p}{q} e=qp,这里 p , q ∈ N + p, q \in \mathbb{N}_{+} p,qN+
0 < e − s q < 1 q ! q 0 < e - s_{q} < \frac{1}{q!q} 0<esq<q!q1
进而
0 < q ! ( e − s q ) < 1 q ! ≤ 1 0 < q! \left( e - s_{q} \right) < \frac{1}{q!} \le 1 0<q!(esq)<q!11
根据假设, q ! e q!e q!e是正整数,因为
q ! s q = q ! ( 1 + 1 + 1 2 ! + ⋯ + 1 q ! ) q! s_{q} = q!\left( 1 + 1 + \frac{1}{2!} + \cdots + \frac{1}{q!} \right) q!sq=q!(1+1+2!1++q!1)
也是正整数,于是就知道 q ! ( e − s q ) q! \left( e-s_{q} \right) q!(esq)是正整数

因为 q ≥ 1 q \ge 1 q1,那么 0 0 0 1 1 1之间还有正整数。矛盾

实际上 e e e甚至不是代数数

根值验敛法与比率验敛法

定理(根值验敛法(root test) ) 3.33 设有 ∑ a n \sum a_{n} an,令 α = lim sup ⁡ n → ∞ ∣ a n ∣ n \alpha = \limsup_{n\to \infty} \sqrt[n]{ \left| a_{n} \right|} α=limsupnnan ,那么
(a) α < 1 \alpha < 1 α<1时, ∑ a n \sum a_{n} an收敛
(b) α > 1 \alpha > 1 α>1时, ∑ a n \sum a_{n} an发散;
© α = 1 \alpha = 1 α=1时,无结果
证明:
(a)
‌‌‌‌  如果 α < 1 \alpha < 1 α<1,便可以根据定理3.17(b)选一个 β \beta β和一个正整数 N N N,要求 α < β < 1 \alpha < \beta <1 α<β<1,而且当 n ≥ N n \ge N nN
∣ a n ∣ n < β \sqrt[n]{ \left| a_{n} \right| } < \beta nan <β
这就是说 n ≥ N n \ge N nN时得出
∣ a n ∣ < β n \left| a_{n} \right| < \beta^n an<βn
0 < β < 1 0 < \beta < 1 0<β<1,那么 ∑ β n \sum \beta^n βn收敛。根据比较验敛法, ∑ a n \sum a_{n} an必收敛
(b)
‌‌‌‌  如果 α > 1 \alpha > 1 α>1,那么再根据定理3.17(a),一定有一个序列 { n k } \left\{ n_{k} \right\} {nk},使得
a n k n k → α \sqrt[n_{k}]{ a_{n_{k}}} \to \alpha nkank α
所以对于无穷多个 n n n的值,会出现 ∣ a n ∣ > 1 \left| a_{n} \right| > 1 an>1,因此, ∑ a n \sum a_{n} an收敛的必要性(定理3.23) a n → 0 a_{n} \to 0 an0不能成立
©
∑ 1 n , ∑ 1 n 2 \sum \frac{1}{n},\quad \sum\frac{1}{n^2} n1,n21
这两个级数的 α = 1 \alpha =1 α=1,前者发散,后者收敛

定理(比率验敛法(ratio test)) 3.34 关于级数 ∑ a n \sum a_{n} an
(a)如果 lim sup ⁡ n → ∞ ∣ a n + 1 a n ∣ < 1 \limsup_{n\to \infty} \left| \frac{a_{n+1}}{a_{n}} \right| < 1 limsupn anan+1 <1,它就收敛
(b)如果有某个固定的正整数 n 0 n_{0} n0 n ≥ n 0 n \ge n_{0} nn0 ∣ a n + 1 a n ∣ ≥ 1 \left| \frac{a_{n+1}}{a_{n}} \right| \ge 1 anan+1 1,他就发散
证明:
(a)
根据定理3.17(b),选一个 lim sup ⁡ n → ∞ ∣ a n + 1 a n ∣ < β < 1 \limsup_{n\to \infty} \left| \frac{a_{n+1}}{a_{n}} \right| <\beta < 1 limsupn anan+1 <β<1和正整数 N N N,使得 n ≥ N n \ge N nN时,
∣ a n + 1 a n ∣ < β \left| \frac{a_{n+1}}{a_{n}} \right| <\beta anan+1 <β
一个个地写出来就是
∣ a N + 1 ∣ < β ∣ a N ∣ ∣ a N + 2 ∣ < β ∣ a N + 1 ∣ < β 2 ∣ a N ∣ ⋯ ∣ a N + p ∣ < β p ∣ a N ∣ \begin{aligned} & \left| a_{N+1} \right| < \beta \left| a_{N} \right| \\ & \left| a_{N+2} \right| < \beta \left| a_{N+1} \right|<\beta^2 \left| a_{N} \right| \\ &\cdots\\ & \left| a_{N+p} \right|< \beta^p \left| a_{N} \right| \end{aligned} aN+1<βaNaN+2<βaN+1<β2aNaN+p<βpaN
这意味着当 n ≥ N n \ge N nN时,
∣ a n ∣ < ∣ a N ∣ β − N β n \left| a_{n} \right| < \left| a_{N} \right| \beta^{-N}\beta^{n} an<aNβNβn
这样一来,(a)的结论就可以根据 ∑ β n \sum \beta^n βn收敛,由比较验敛法推出来了

(b)
如果当 n ≥ n 0 n \ge n_{0} nn0时, ∣ a n + 1 ∣ ≥ ∣ a n ∣ \left| a_{n+1} \right|\ge \left| a_{n} \right| an+1an,便容易知道,条件 a n → 0 a_{n} \to 0 an0不能成立,由此就推出(b)

注:如果 lim ⁡ n → ∞ a n + 1 a n = 1 \lim\limits_{ n \to \infty } \frac{a_{n+1}}{a_{n}}=1 nlimanan+1=1,对于 ∑ a n \sum a_{n} an的收敛性,什么都说明不了,例如 ∑ 1 n \sum \frac{1}{n} n1 ∑ 1 n 2 \sum \frac{1}{n^2} n21

例 3.35
(a)
1 2 + 1 3 + 1 2 2 + 1 3 2 + ⋯ \frac{1}{2} + \frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots 21+31+221+321+
对于这个级数
lim inf ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ ( 2 3 ) n = 0 lim inf ⁡ n → ∞ a n n = lim ⁡ n → ∞ 1 3 n 2 n = 0 lim sup ⁡ n → ∞ a n n = lim ⁡ n → ∞ 1 2 n 2 n = 1 2 lim sup ⁡ n → ∞ a n + 1 a n = lim ⁡ n → ∞ ( 3 2 ) n = + ∞ \begin{aligned} \liminf_{n\to \infty} \frac{a_{n+1}}{a_{n}} &= \lim\limits_{ n \to \infty } \left( \frac{2}{3} \right)^n=0\\ \liminf_{n\to \infty} \sqrt[n]{ a_{n}} &= \lim\limits_{ n \to \infty } \sqrt[2n]{ \frac{1}{3^n}}=0\\ \limsup_{n\to \infty} \sqrt[n]{ a_{n} }&= \lim\limits_{ n \to \infty } \sqrt[2n]{ \frac{1}{2^n} }= \frac{1}{\sqrt{ 2 }}\\ \limsup_{n\to \infty} \frac{a_{n+1}}{a_{n}} &= \lim\limits_{ n \to \infty } \left( \frac{3}{2} \right)^{n}= + \infty \end{aligned} nliminfanan+1nliminfnan nlimsupnan nlimsupanan+1=nlim(32)n=0=nlim2n3n1 =0=nlim2n2n1 =2 1=nlim(23)n=+
根值验敛法说明收敛,比率收敛法说明发散

(b)
1 2 + 1 + 1 8 + 1 4 + 1 32 + 1 16 + ⋯ \frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \cdots 21+1+81+41+321+161+
lim inf ⁡ n → ∞ a n + 1 a n = 1 8 lim sup ⁡ n → ∞ a n + 1 a n = 2 \begin{aligned} \liminf_{n\to \infty} \frac{a_{n+1}}{a_{n}} &= \frac{1}{8}\\ \limsup_{n \to \infty} \frac{a_{n+1}}{a_{n}} &= 2 \end{aligned} nliminfanan+1nlimsupanan+1=81=2
但是
lim ⁡ n → ∞ a n n = 1 2 \lim\limits_{ n \to \infty } \sqrt[n]{ a_{n} } = \frac{1}{2} nlimnan =21
定理 3.37 对于任意的正数序列 { c n } \left\{ c_{n} \right\} {cn},有
lim inf ⁡ n → ∞ c n + 1 c n ≤ lim inf ⁡ n → ∞ c n n \liminf_{n\to \infty} \frac{c_{n+1}}{c_{n}} \le \liminf_{n\to\infty} \sqrt[n]{ c_{n} } nliminfcncn+1nliminfncn
lim sup ⁡ n → ∞ c n n ≤ lim sup ⁡ n → ∞ c n + 1 c n \limsup_{n\to\infty} \sqrt[n]{ c_{n} } \le \limsup_{n\to \infty} \frac{c_{n+1}}{c_{n}} nlimsupncn nlimsupcncn+1
证明:
先证明第二个

α = lim sup ⁡ n → ∞ c n + 1 c n \alpha = \limsup_{n\to \infty} \frac{c_{n+1}}{c_{n}} α=nlimsupcncn+1
如果 α = + ∞ \alpha = +\infty α=+,便无需证明
如果 α \alpha α有限,取 β > α \beta > \alpha β>α,必有正整数 N N N,使得 n ≥ N n \ge N nN
c n + 1 c n ≤ β \frac{c_{n+1}}{c_{n}} \le \beta cncn+1β
个别地说,对于任何 p > 0 p >0 p>0
c N + k + 1 ≤ β c N + k ( k = 0 , 1 , ⋯   , p − 1 ) c_{N+k+1} \le \beta c_{N+k} \left( k=0,1,\cdots,p-1 \right) cN+k+1βcN+k(k=0,1,,p1)
把这些不等式连乘起来,就得到
c N + p ≤ β p c N c_{N+p} \le \beta^{p} c_{N} cN+pβpcN
或者
c n ≤ c N β − N β n ( n ≥ N ) c_{n} \le c_{N} \beta^{-N} \beta^{n} \left( n \ge N \right) cncNβNβn(nN)
于是
c n n ≤ c N β − N n β \sqrt[n]{ c_{n} } \le \sqrt[n]{c_{N} \beta^{-N} }\beta ncn ncNβN β
根据定理3.20(b),得到
lim sup ⁡ n → ∞ c n n ≤ β \limsup_{n\to \infty} \sqrt[n]{ c_{n} } \le \beta nlimsupncn β
又因为对任何 β > α \beta >\alpha β>α都成立,于是我们得到
lim sup ⁡ c n n ≤ α \limsup \sqrt[n]{ c_{n} }\le \alpha limsupncn α

  • 24
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值