谱分解学习

正规矩阵

A A A是复数域上的 n n n阶方阵,如果有
A A H = A H A AA^H=A^HA AAH=AHA
则称 A A A正规矩阵
如果 A A A是实属域上的 n n n阶方阵,且有
A A T = A T A AA^T=A^TA AAT=ATA
则称 A A A实正规矩阵

舒尔(Schur)定理

任何一个 n n n阶矩阵都酉相似与一个上三角矩阵,即存在一个 n n n阶酉矩阵 U U U和一个上三角矩阵 R R R,使得
U H A U = T U^HAU=T UHAU=T
其中 T T T的主对角元素是 A A A的特征值
证明:
懒了,和之前证实对称矩阵必可相似对角化差不多

酉相似对角化充要条件

A ∈ C n × n A\in C^{n\times n} ACn×n,则 A A A酉相似对角化的充要条件是 A A A是正规矩阵

证明:
充分性:
根据舒尔定理,存在酉矩阵 U U U,使得 U H A U = T U^HAU=T UHAU=T为上三角矩阵,且其对角元素是 A A A的特征值,于是有
T T H = ( U H A U ) ( U H A U ) H = U H A U U H A H U = U H A A H U = U H A H A U = U H A H U U H A U = ( U H A U ) H ( U H A U ) = T H T \begin{aligned} TT^H&=(U^HAU)(U^HAU)^H\\ &=U^HAUU^HA^HU\\ &=U^HAA^HU\\ &=U^HA^HAU\\ &=U^HA^HUU^HAU\\ &=(U^HAU)^H(U^HAU)\\ &=T^HT \end{aligned} TTH=(UHAU)(UHAU)H=UHAUUHAHU=UHAAHU=UHAHAU=UHAHUUHAU=(UHAU)H(UHAU)=THT
( T T H ) i i = ∑ j = i n ∣ t i j ∣ 2 , ( T H T ) i i = ∑ j = 1 i ∣ t j i ∣ 2 (TT^H)_{ii}=\sum_{j=i}^{n}\left|t_{ij}\right|^2,(T^HT)_{ii}=\sum_{j=1}^{i}\left|t_{ji}\right|^2 (TTH)ii=j=intij2,(THT)ii=j=1itji2
因为
( T T H ) i i = ( T H T ) i i (TT^H)_{ii}=(T^HT)_{ii} (TTH)ii=(THT)ii
所以 t i j = 0 ( i ≠ j ) t_{ij}=0(i\neq j) tij=0(i=j)
所以 T T T是一个对角矩阵
所以
U H A U = d i a g ( t 11 , ⋯   , t n n ) U^HAU=diag(t_{11},\cdots,t_{nn}) UHAU=diag(t11,,tnn)

必要性:
A A A酉相似于对角矩阵 Λ \Lambda Λ
U H A U = Λ = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) U^HAU=\Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) UHAU=Λ=diag(λ1,λ2,,λn)
Λ H = d i a g ( λ ‾ 1 , ⋯   , λ ‾ n ) \Lambda^H=diag(\overline{\lambda}_1,\cdots,\overline{\lambda}_n) ΛH=diag(λ1,,λn)

对角矩阵是可交换的,即
Λ Λ H = Λ H Λ U H A A H U = U H A A U A A H = A H A \begin{aligned} \Lambda\Lambda^H &=\Lambda^H \Lambda\\ U^HAA^HU &=U^HAAU\\ AA^H&=A^HA \end{aligned} ΛΛHUHAAHUAAH=ΛHΛ=UHAAU=AHA

推论

A A A是正规矩阵,若 A A A是三角矩阵,则 A A A是对角矩阵

定理1

A ∈ C n × n A\in \mathbb{C}^{n\times n} ACn×n,则 A A A为正规矩阵 ⇔ \Leftrightarrow A A A n n n个两两正交的单位特征向量

推论

正规矩阵属于不同特征值的特征向量两两正交

定理2

A ∈ C n × n A\in \mathbb{C}^{n\times n} ACn×n, λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn A A A的特征值,则
(1)舒尔不等式: ∑ i = 1 n ∣ λ i ∣ 2 ≤ ∑ i , j = 1 n ∣ a i j ∣ 2 \sum_{i=1}^{n}\left|\lambda_i\right|^2\le \sum_{i,j=1}^{n}\left|a_{ij}\right|^2 i=1nλi2i,j=1naij2
(2) A A A是正规矩阵 ⇔ ∑ i = 1 n ∣ λ i ∣ 2 = ∑ i , j = 1 n ∣ a i j ∣ 2 \Leftrightarrow \sum_{i=1}^{n}\left|\lambda_i\right|^2=\sum_{i,j=1}^{n}\left|a_{ij}\right|^2 i=1nλi2=i,j=1naij2
证明:
(1)
由舒尔定理
U H A U = B U^HAU=B UHAU=B为上三角矩阵, b i i = λ i ( i = 1 , 2 , ⋯   , n ) b_{ii}=\lambda_i(i=1,2,\cdots,n) bii=λi(i=1,2,,n)

U H A A H U = B B H U^HAA^HU=BB^H UHAAHU=BBH
因为酉相似,所以迹相等
∑ i = 1 n ∣ λ i ∣ 2 = ∑ i = 1 n ∣ b i i ∣ 2 ≤ ∑ i , j = 1 n ∣ b i j ∣ 2 = ∑ i , j = 1 n ∣ a i j ∣ 2 \sum_{i=1}^{n}\left|\lambda_i\right|^2=\sum_{i=1}^{n}\left|b_{ii}\right|^2\le \sum_{i,j=1}^{n}\left|b_{ij}\right|^2=\sum_{i,j=1}^{n}\left|a_{ij}\right|^2 i=1nλi2=i=1nbii2i,j=1nbij2=i,j=1naij2
(2)
A A A是正规矩阵,所以可以酉相似对角化,所以 b i j = 0 ( i ≠ 0 ) b_{ij}=0(i\neq 0) bij=0(i=0)
所以成立

正规矩阵的谱分解

A A A是正规矩阵,则存在酉矩阵 U U U使得 U H A U = d i a g ( λ 1 , ⋯   , λ n ) U^HAU=diag(\lambda_1,\cdots,\lambda_n) UHAU=diag(λ1,,λn)
A = U d i a g ( λ 1 , ⋯   , λ n ) U H A=Udiag(\lambda_1,\cdots,\lambda_n)U^H A=Udiag(λ1,,λn)UH
U = ( α 1 , ⋯   , α n ) U=(\alpha_1,\cdots,\alpha_n) U=(α1,,αn),则
A = ( α 1 , ⋯   , α n ) d i a g ( λ 1 , ⋯   , λ n ) ( α 1 H ⋮ α n ) = λ 1 α 1 α 1 H + ⋯ + λ n α n α n H \begin{aligned} A&=(\alpha_1,\cdots,\alpha_n)diag(\lambda_1,\cdots,\lambda_n)\begin{pmatrix} \alpha_1^H\\ \vdots\\ \alpha_n \end{pmatrix}\\ &=\lambda_1\alpha_1\alpha_1^H+\cdots+\lambda_n\alpha_n\alpha_n^H \end{aligned} A=(α1,,αn)diag(λ1,,λn)α1Hαn=λ1α1α1H++λnαnαnH
其中 λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn A A A的特征值, α 1 , ⋯   , α n \alpha_1,\cdots,\alpha_n α1,,αn为其对应的两两正交的单位特征向量
故称为正规矩阵 A A A谱分解特征(值)分解

如果把系数相同的放在一起(0特征值对应的项去掉),然后把系数提出来,得到
A = λ 1 P 1 + ⋯ + λ s P s A=\lambda_1P_1+\cdots+\lambda_sP_s A=λ1P1++λsPs
其中 λ 1 , ⋯   , λ s \lambda_1,\cdots,\lambda_s λ1,,λs A A A的互不相同的非零特征值,由于
( α i α i H ) H = α i α i H ( 1 ≤ i ≤ n ) ( α i α i H ) ( α j α j H ) = 0 ( 1 ≤ i ≠ j ≤ n ) ( α i α i H ) 2 = α i α i H ( 1 ≤ i ≤ n ) (\alpha_i\alpha_i^H)^H=\alpha_i\alpha_i^H(1\le i\le n)\\ (\alpha_i\alpha_i^H)(\alpha_j\alpha_j^H)=0(1\le i\neq j \le n)\\ (\alpha_i\alpha_i^H)^2=\alpha_i\alpha_i^H(1\le i \le n) (αiαiH)H=αiαiH(1in)(αiαiH)(αjαjH)=0(1i=jn)(αiαiH)2=αiαiH(1in)
所以
P i H = P i , P i 2 = P i , P i P j = 0 ( 1 ≤ i ≠ j ≤ s ) P_i^H=P_i,P_i^2=P_i,P_iP_j=0(1\le i\neq j\le s) PiH=Pi,Pi2=Pi,PiPj=0(1i=js)

P i P_i Pi是某正交变换(在某基下)的矩阵,故常称为正交投影矩阵

单纯矩阵的谱分解

A A A是单纯矩阵
λ 1 , ⋯   , λ n \lambda_1,\cdots,\lambda_n λ1,,λn A A A n n n个特征值, x 1 , ⋯   , x n x_1,\cdots,x_n x1,,xn A A A n n n个线性无关的特征向量,且有
A x i = λ i x i ( i = 1 , 2 , ⋯   , n ) Ax_i=\lambda_i x_i(i=1,2,\cdots,n) Axi=λixi(i=1,2,,n)

P = ( x 1 , ⋯   , x n ) P=(x_1,\cdots,x_n) P=(x1,,xn)
Λ = d i a g ( λ 1 , ⋯   , λ n ) \Lambda=diag(\lambda_1,\cdots,\lambda_n) Λ=diag(λ1,,λn)

A = P Λ P − 1 A=P\Lambda P^{-1} A=PΛP1
A T = ( P T ) − 1 Λ P T A^T=(P^T)^{-1}\Lambda P^T AT=(PT)1ΛPT
立即推 A T A^T AT也与对角矩阵相似,因此,设 y 1 , ⋯   , y n y_1,\cdots,y_n y1,,yn A T A^T AT n n n个线性无关的特征向量,即
A T y i = λ i y i ( i = 1 , 2 , ⋯   , n ) A^T y_{i}=\lambda_i y_i(i=1,2,\cdots,n) ATyi=λiyi(i=1,2,,n)
y i T A = λ i y i T ( i = 1 , 2 , ⋯   , n ) y_{i}^T A=\lambda_i y_i^T(i=1,2,\cdots,n) yiTA=λiyiT(i=1,2,,n)
y i T y_i^T yiT A A A左特征向量, x i x_i xi A A A右特征向量
( y 1 , ⋯   , y n ) = ( P T ) − 1 = ( P − 1 ) T (y_1,\cdots,y_n)=(P^T)^{-1}=(P^{-1})^T (y1,,yn)=(PT)1=(P1)T
P − 1 = ( y 1 T ⋮ y n T ) P^{-1}= \begin{pmatrix} y_1^T\\ \vdots\\ y_n^T \end{pmatrix} P1=y1TynT
P P − 1 = P − 1 P = I PP^{-1}=P^{-1}P=I PP1=P1P=I,得
( x 1 , ⋯   , x n ) ( y 1 T ⋮ y n T ) = ( x 1 T ⋮ x n T ) ( y 1 , ⋯   , y n ) = I (x_1,\cdots,x_n)\begin{pmatrix} y_1^T\\ \vdots\\ y_n^T \end{pmatrix}= \begin{pmatrix} x_1^T\\ \vdots\\ x_n^T \end{pmatrix}(y_1,\cdots,y_n)=I (x1,,xn)y1TynT=x1TxnT(y1,,yn)=I
立即推
x 1 y 1 T + x 2 y 2 T + ⋯ x n y n T = I x_1y_1^T+x_2y_2^T+\cdots x_n y_n^T=I x1y1T+x2y2T+xnynT=I
比较两端得
y i T x j = δ i j = { 1 , i = j 0 , i ≠ j ( i , j = 1 , 2 , ⋯   , n ) y_i^Tx_j=\delta_{ij}=\begin{cases} 1,i=j\\ 0,i\neq j\\ \end{cases}(i,j=1,2,\cdots,n) yiTxj=δij={1,i=j0,i=j(i,j=1,2,,n)
于是
A = ( x 1 , ⋯   , x n ) d i a g ( λ 1 , ⋯   , λ n ) ( y 1 T ⋮ y n T ) = λ 1 x 1 y 1 T + ⋯ + λ n x n y n T \begin{aligned} A&=(x_1,\cdots,x_n)diag(\lambda_1,\cdots,\lambda_n)\begin{pmatrix} y_1^T\\ \vdots\\ y_n^T \end{pmatrix}\\ &=\lambda_1 x_1 y_1^T+\cdots+\lambda_n x_n y_n^T \end{aligned} A=(x1,,xn)diag(λ1,,λn)y1TynT=λ1x1y1T++λnxnynT


G i = x i y i T G_i=x_i y_i^T Gi=xiyiT
得到
A = ∑ i = 1 n λ i G i A=\sum_{i=1}^{n}\lambda_i G_i A=i=1nλiGi
称为单纯矩阵 A A A的谱分解

定理

A A A n n n阶单纯矩阵, λ 1 , ⋯   , λ r \lambda_1,\cdots,\lambda_r λ1,,λr A A A r r r个相异的特征值,则 A A A可以进行满足下列性质的谱分解
(1) A = ∑ j = 1 r λ j E j A=\sum_{j=1}^{r}\lambda_j E_j A=j=1rλjEj
(2) E j 2 = E j ( j = 1 , 2 , ⋯   , r ) E_j^2=E_j(j=1,2,\cdots,r) Ej2=Ej(j=1,2,,r)
(3) E i E j = 0 ( i ≠ j , i , j = 1 , ⋯   , r ) E_iE_j=0(i\neq j,i,j=1,\cdots,r) EiEj=0(i=j,i,j=1,,r)
(4) ∑ j = 1 r E j = I \sum_{j=1}^{r}E_j=I j=1rEj=I

证明:
设对应与 λ j \lambda_j λj的线性无关的右特征向量 x 1 j , ⋯   , x s j j x_1^j,\cdots,x_{s_j}^j x1j,,xsjj,其中 s j s_j sj是对应 λ j \lambda_j λj的代数重复度,而左特征向量为 ( y 1 j ) T , ⋯   , ( y s j j ) T (y_1^j)^T,\cdots, (y_{s_j}^j)^T (y1j)T,,(ysjj)T
于是
A = ∑ j = 1 r λ j ( ∑ k = 1 s j x k j ( y k j ) T ) = ∑ i = 1 r λ j E j A=\sum_{j=1}^{r}\lambda_{j}(\sum_{k=1}^{s_j}x_k^j(y_k^j)^T)=\sum_{i=1}^{r}\lambda_jE_j A=j=1rλj(k=1sjxkj(ykj)T)=i=1rλjEj

E j = ∑ k = 1 s j x k j ( y k j ) T = ( x 1 j , ⋯   , x s j j ) ( ( y 1 j ) T ⋮ ( y s j j ) T ) E_j=\sum_{k=1}^{s_j}x_k^j(y_k^j)^T=(x_1^j,\cdots,x_{s_j}^j) \begin{pmatrix} (y_1^j)^T\\ \vdots\\ (y_{s_j}^j)^T \end{pmatrix} Ej=k=1sjxkj(ykj)T=(x1j,,xsjj)(y1j)T(ysjj)T
所以
∑ j = 1 r E j = I \sum_{j=1}^{r}E_j=I j=1rEj=I

y i T x j = δ i j y_i^Tx_j=\delta_{ij} yiTxj=δij

E j 2 = E j , E i E j = 0 E_j^2=E_j,E_iE_j=0 Ej2=Ej,EiEj=0

E j E_j Ej称为 A A A谱分解的成分矩阵幂等矩阵

推论

A = ∑ j = 1 r λ j E j A=\sum_{j=1}^{r}\lambda_jE_j A=j=1rλjEj是单纯矩阵的谱分解,则
A m = ∑ j = 1 r λ j m E j A^m=\sum_{j=1}^{r}\lambda_j^mE_j Am=j=1rλjmEj

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
聚类算法是一种常用的聚类算法,可以用于无监督学习和数据分析。在聚类算法中,首先构建数据点之间的相似度矩阵,然后对该矩阵进行特征值分解或拉普拉斯矩阵分解,最后通过KMeans等聚类算法将数据点划分为不同的簇。 聚类算法的优点是能够发现非常复杂的数据结构,对噪声数据有较好的鲁棒性,并且能够处理非球形和非凸形状的簇。聚类算法还可以避免传统聚类算法中的距离度量问题和簇的数目选择问题。此外,由于聚类算法在计算相似度矩阵时不需要事先确定各个数据点的簇归属,因此可以用于无监督学习。 CSDN是一个技术社区,提供了大量的软件、编程、开发等方面的资源和知识。在CSDN上,可以搜索到聚类算法的相关资料,并进行下载学习。CSDN上提供了很多从理论到实践的教程、博客和教学视频,可以帮助我们更好地理解和掌握聚类算法。 对于想要学习聚类算法的人来说,可以通过CSDN下载相关的代码和资料,进行学习和实践。可以找到一些开源的Python或MATLAB代码,也可以看到其他人的代码解析和实例应用。此外,在CSDN的技术问答社区中,我们还可以向其他热心的技术人员请教问题,获得更深入的理解和指导。 总之,CSDN是一个提供聚类算法相关资源和知识的平台,可以帮助我们更好地学习和应用聚类算法。通过下载相关资料和与其他技术人员交流,我们可以更好地理解算法原理,掌握聚类算法的应用技巧,提高数据分析和聚类的能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值