有限集和无限集
后继集
设 S S S是任一集合,称 S + = S ∪ { S } S^+ = S\cup \left\{ S\right\} S+=S∪{S}为 S S S的后继集
自然数集
自然数集
N
\mathbb{N}
N的归纳定义是:
(1)
∅
∈
N
\empty \in \mathbb{N}
∅∈N
(2)若
n
∈
N
n\in \mathbb{N}
n∈N,则
n
+
∈
N
n^+ \in \mathbb{N}
n+∈N
(3)若
S
∈
N
S\in \mathbb{N}
S∈N,且满足
1.
∅
∈
S
\empty \in S
∅∈S;
2. 若
n
∈
S
n \in S
n∈S,则
n
+
∈
S
n^+\in S
n+∈S;
则 S = N S=\mathbb{N} S=N
我们约定,依次记
0
=
∅
1
=
0
+
=
∅
+
=
{
∅
}
2
=
1
+
=
{
∅
}
+
=
{
∅
,
{
∅
}
}
3
=
2
+
=
{
∅
,
{
∅
}
}
+
=
{
∅
,
{
∅
}
,
{
∅
,
{
∅
}
}
}
⋯
\begin{aligned} 0 &= \empty\\ 1 &= 0^+ = \empty^+ = \left\{\empty \right\}\\ 2 &= 1^+ = \left\{\empty \right\}^+ = \left\{ \empty, \left\{\empty \right\}\right\}\\ 3 &= 2^+ = \left\{ \empty, \left\{\empty \right\}\right\}^+=\left\{\empty, \left\{\empty \right\},\left\{ \empty, \left\{\empty \right\}\right\}\right\}\\ &\cdots \end{aligned}
0123=∅=0+=∅+={∅}=1+={∅}+={∅,{∅}}=2+={∅,{∅}}+={∅,{∅},{∅,{∅}}}⋯
由定义,每个自然数 n n n,都有 n ∈ n + n\in n^+ n∈n+和 n ⊆ n + n \subseteq n^+ n⊆n+,利用这一性质可在 N \mathbb{N} N上引进大小次序关系
若
m
,
n
∈
N
m,n \in\mathbb{N}
m,n∈N使
m
∈
n
m\in n
m∈n则称
m
m
m小于
n
n
n(或
n
n
n大于
m
m
m),记为
m
<
n
m<n
m<n(或
n
>
m
n > m
n>m)
我们将
N
\mathbb{N}
N的前
n
n
n个自然数的集合记为
N
n
=
{
0
,
1
,
2
,
⋯
,
n
−
1
}
\mathbb{N}_n = \left\{0, 1, 2,\cdots, n -1\right\}
Nn={0,1,2,⋯,n−1}
设
A
A
A和
B
B
B使任意集合,若存在从
A
A
A到
B
B
B的双射,则称
A
A
A与
B
B
B是等势的,记为
A
∼
B
A\sim B
A∼B;
若
A
A
A与
B
B
B不等势,则记为
A
≁
B
A\not\sim B
A∼B
例子:
N
∼
I
\mathbb{N} \sim \mathbb{I}
N∼I
作
f
:
N
→
I
f:\mathbb{N} \to \mathbb{I}
f:N→I,
f
(
x
)
=
{
−
x
+
1
2
,
x is odd
x
2
,
o
t
h
e
r
w
i
s
e
f\left(x\right) = \begin{cases} -\frac{x + 1}{2}, & \text{x is odd}\\ \frac{x}{2}, & otherwise \end{cases}
f(x)={−2x+1,2x,x is oddotherwise
容易验证
f
f
f双射
若有
n
∈
N
n\in \mathbb{N}
n∈N,使得
N
n
∼
A
\mathbb{N}_n\sim A
Nn∼A,则称
A
A
A是有限集,且称其基数为
n
n
n,记为
∣
A
∣
=
n
\left|A\right|=n
∣A∣=n;
若
A
A
A不是有限集,则称
A
A
A是无限集
例子: 自然数是无限集合
证明:假设
N
\mathbb{N}
N是有限集,则有
n
∈
N
n\in\mathbb{N}
n∈N,使得存在双射
f
:
N
n
→
N
f:\mathbb{N}_n\to \mathbb{N}
f:Nn→N
取
k
=
max
{
f
(
i
)
∣
i
∈
N
n
}
+
1
k = \max\left\{f\left(i\right)|i \in \mathbb{N}_n\right\} + 1
k=max{f(i)∣i∈Nn}+1
则
k
∈
N
k\in\mathbb{N}
k∈N,并且不存在
x
∈
N
n
x\in\mathbb{N}_n
x∈Nn,使得
f
(
x
)
=
k
f\left(x\right) = k
f(x)=k,即
f
f
f不是满射的,矛盾
定理1: 任何有限集都不能与它的真子集等势
定理2:
设
A
A
A是有限集,
B
B
B是无限集,
C
C
C是任意集合
(1)若
C
⊆
A
C\subseteq A
C⊆A,则
C
C
C是有限集
(2)若
B
⊆
C
B\subseteq C
B⊆C,则
C
C
C是无限集合
可数集与不可数集
设
A
A
A是任意集合。若
N
∼
A
\mathbb{N}\sim A
N∼A,则称
A
A
A是可数无限集,并称
A
A
A的基数为
ℵ
0
\aleph_0
ℵ0(阿列夫零),记为
∣
A
∣
=
ℵ
0
\left|A\right| = \aleph_0
∣A∣=ℵ0
有限集和可数无限集称为可数集或可列集;非可数的集合称为不可数集
若
A
A
A是可数集,则存在双射
f
:
N
n
→
A
f: \mathbf{N}_n\to A
f:Nn→A或者
f
:
N
→
A
f:\mathbf{N}\to A
f:N→A,因此
A
A
A中的元素可无重复排列为
f
(
0
)
,
f
(
1
)
,
⋯
,
f
(
n
−
1
)
f\left(0\right), f\left(1\right),\cdots, f\left(n-1\right)
f(0),f(1),⋯,f(n−1)或者
f
(
0
)
,
f
(
1
)
,
f
(
2
)
,
⋯
f\left(0\right),f\left(1\right), f\left(2\right),\cdots
f(0),f(1),f(2),⋯,反之,若
A
A
A中的元素能无重复地排列称
a
0
,
a
1
,
⋯
,
a
n
−
1
a_0, a_1,\cdots, a_{n-1}
a0,a1,⋯,an−1或者
a
0
,
a
1
,
a
2
,
⋯
a_0,a_1,a_2,\cdots
a0,a1,a2,⋯,则存在双射
f
:
N
n
→
A
,
f
(
i
)
=
a
i
f:\mathbb{N}_n\to A,\quad f\left(i\right) = a_i
f:Nn→A,f(i)=ai
或者
f
:
N
→
A
,
f
(
i
)
=
a
i
f:\mathbb{N}\to A,\quad f\left(i\right) =a_i
f:N→A,f(i)=ai
由此可见,
A
A
A是可数集当且仅当
A
A
A中所有元素可排列成一个无重复的序列,可以证明,“无重复”这一条件是可以省去的,也就是说,要证明一个集合是可数,只要证明该集合中的所有元素能够排成一个序列即可
例子1:
N
×
N
\mathbb{N}\times \mathbb{N}
N×N是可数集
证明:
< 0 , 0 > < 0 , 1 > < 0 , 2 > ⋯ ↙ ↙ ↙ < 1 , 0 > < 1 , 1 > < 1 , 2 > ⋯ ↙ ↙ < 2 , 0 > < 2 , 1 > < 2 , 2 > ⋯ ↙ ⋮ ⋮ ⋮ \begin{array}{cccc} \left<0,0\right> & & \left<0,1\right> & & \left<0,2\right> & & \cdots\\ &\swarrow&&\swarrow&&\swarrow&\\ \left<1,0\right> & & \left<1,1\right> & & \left<1,2\right> & & \cdots\\ &\swarrow&&\swarrow&&&\\ \left<2,0\right> & & \left<2,1\right> & & \left<2,2\right> & & \cdots\\ &\swarrow&&&&&\\ \vdots & & \vdots & &\vdots & &\\ \end{array} ⟨0,0⟩⟨1,0⟩⟨2,0⟩⋮↙↙↙⟨0,1⟩⟨1,1⟩⟨2,1⟩⋮↙↙⟨0,2⟩⟨1,2⟩⟨2,2⟩⋮↙⋯⋯⋯
f
:
N
×
N
→
N
f:\mathbb{N}\times \mathbb{N} \to \mathbb{N}
f:N×N→N
f
(
m
,
n
)
=
(
m
+
n
)
(
m
+
n
+
1
)
2
+
m
f\left(m,n\right) = \frac{\left(m + n\right)\left(m +n + 1\right)}{2} + m
f(m,n)=2(m+n)(m+n+1)+m
定理1: 可数集的任何子集都是可数集
定理2: 可数个可数集的并集是可数集
证明:
(1)有限个可数集的并集
设
A
0
,
A
1
,
⋯
,
A
n
−
1
A_0, A_1,\cdots, A_{n-1}
A0,A1,⋯,An−1均是可数集,且
A
i
=
{
a
i
0
,
a
i
1
,
⋯
,
}
,
0
≤
i
≤
n
−
1
A_i=\left\{a_{i0}, a_{i1},\cdots,\right\}, 0\le i \le n-1
Ai={ai0,ai1,⋯,},0≤i≤n−1
(若
A
i
A_i
Ai是有限集,则重复
A
i
A_i
Ai的重复
A
i
A_i
Ai的最后一个元素)
令
ζ
=
{
A
0
,
A
1
,
⋯
,
A
n
−
1
}
\zeta = \left\{A_0, A_1,\cdots, A_{n-1}\right\}
ζ={A0,A1,⋯,An−1},则
∪
ζ
\cup \zeta
∪ζ中的所有元素可排列为
A
0
a
00
a
01
a
02
⋯
↓
↓
↓
A
1
a
10
a
11
a
12
⋯
↓
↓
↓
⋮
⋮
⋮
⋮
↓
↓
↓
A
n
−
1
a
(
n
−
1
)
0
a
(
n
−
1
)
1
a
(
n
−
1
)
2
⋯
\begin{array}{cccc} A_0 & a_{00} & a_{01}& a_{02}&\cdots\\ &\downarrow & \downarrow&\downarrow&\\ A_1 & a_{10} & a_{11}& a_{12}&\cdots\\ &\downarrow & \downarrow&\downarrow&\\ \vdots & \vdots & \vdots & \vdots &\\ &\downarrow & \downarrow&\downarrow&\\ A_{n-1} & a_{\left(n-1\right)0} & a_{\left(n-1\right)1}& a_{\left(n-1\right)2}&\cdots\\ \end{array}
A0A1⋮An−1a00↓a10↓⋮↓a(n−1)0a01↓a11↓⋮↓a(n−1)1a02↓a12↓⋮↓a(n−1)2⋯⋯⋯
按上面箭头所指的方向,可将
∪
ζ
\cup \zeta
∪ζ中的所有元素排列成一个序列,故
∪
ζ
\cup \zeta
∪ζ是可数集
(2)可数无限个可数集的并集(?)
设
A
0
,
A
1
,
⋯
A_0, A_1,\cdots
A0,A1,⋯军事可数集,且
A
i
=
{
a
i
0
,
a
i
1
,
⋯
,
}
,
i
∈
N
A_i=\left\{a_{i0}, a_{i1},\cdots,\right\}, i\in\mathbb{N}
Ai={ai0,ai1,⋯,},i∈N
(若
A
i
A_i
Ai是有限集,则重复
A
i
A_i
Ai的重复
A
i
A_i
Ai的最后一个元素)
令
ζ
=
{
A
0
,
A
1
,
⋯
}
\zeta = \left\{A_0, A_1,\cdots\right\}
ζ={A0,A1,⋯},则
∪
ζ
\cup \zeta
∪ζ中的所有元素可排列为
A
0
a
00
a
01
a
02
⋯
↙
↙
↙
A
1
a
10
a
11
a
12
⋯
↙
↙
A
2
a
20
a
21
a
22
⋯
↙
⋮
⋮
⋮
⋮
\begin{array}{cccc} A_0 & a_{00}&&a_{01}&&a_{02}&&\cdots\\ &&\swarrow&&\swarrow&&\swarrow&\\ A_1 & a_{10}&&a_{11}&&a_{12}&&\cdots\\ &&\swarrow&&\swarrow&&&\\ A_2 & a_{20}&&a_{21}&&a_{22}&&\cdots\\ &&\swarrow&&&&&\\ \vdots & \vdots&&\vdots&&\vdots&&\\ \end{array}
A0A1A2⋮a00a10a20⋮↙↙↙a01a11a21⋮↙↙a02a12a22⋮↙⋯⋯⋯
按上面所示的方式,可将
∪
ζ
\cup\zeta
∪ζ的所有元素排成一个序列,故
∪
ζ
\cup\zeta
∪ζ是可数的
定理3 若
A
A
A和
B
B
B是可数集,则
A
×
B
A\times B
A×B是可数集
证明:因为
A
A
A和
B
B
B是可数集,不妨设
A
=
{
a
0
,
a
1
,
⋯
}
A = \left\{a_0,a_1,\cdots\right\}
A={a0,a1,⋯}和
B
=
{
b
0
,
b
1
,
⋯
}
B = \left\{b_0,b_1,\cdots\right\}
B={b0,b1,⋯}
(若是有限集则重复最后一个元素,那么
A
×
B
A\times B
A×B中所有元素可排列为)
<
a
0
,
b
0
>
<
a
0
,
b
1
>
<
a
0
,
b
2
>
⋯
↙
↙
↙
<
a
1
,
b
0
>
<
a
1
,
b
1
>
<
a
1
,
b
2
>
⋯
↙
↙
<
a
2
,
b
0
>
<
a
2
,
b
1
>
<
a
2
,
b
2
>
⋯
↙
⋮
⋮
⋮
\begin{array}{cccc} \left<a_0,b_0\right> & & \left<a_0,b_1\right> & & \left<a_0,b_2\right> & & \cdots\\ &\swarrow&&\swarrow&&\swarrow&\\ \left<a_1,b_0\right> & & \left<a_1,b_1\right> & & \left<a_1,b_2\right> & & \cdots\\ &\swarrow&&\swarrow&&&\\ \left<a_2,b_0\right> & & \left<a_2,b_1\right> & & \left<a_2,b_2\right> & & \cdots\\ &\swarrow&&&&&\\ \vdots & & \vdots & &\vdots & &\\ \end{array}
⟨a0,b0⟩⟨a1,b0⟩⟨a2,b0⟩⋮↙↙↙⟨a0,b1⟩⟨a1,b1⟩⟨a2,b1⟩⋮↙↙⟨a0,b2⟩⟨a1,b2⟩⟨a2,b2⟩⋮↙⋯⋯⋯
按上面的方式,可将
A
×
B
A\times B
A×B的所有元素排列成一个序列,故
A
×
B
A\times B
A×B是可数的
同理可证若 A A A是可数集,则 A n A^n An也是可数集
定理4: 实数集合的子集
[
0
,
1
]
\left[0,1\right]
[0,1]不是可数无限集合
证明:设
f
:
N
→
[
0
,
1
]
f:\mathbb{N}\to \left[0,1\right]
f:N→[0,1]我们把
f
f
f的值顺序排列为十进制小数:
f
(
0
)
=
0.
x
00
x
01
x
02
⋯
,
f
(
1
)
=
0.
x
10
x
11
x
12
⋯
,
⋯
\begin{aligned} f\left(0\right) &= 0.x_{00}x_{01}x_{02}\cdots,\\ f\left(1\right) &= 0.x_{10}x_{11}x_{12}\cdots,\\ \cdots \end{aligned}
f(0)f(1)⋯=0.x00x01x02⋯,=0.x10x11x12⋯,
其中
0
≤
x
i
j
≤
9
(
i
,
j
∈
N
)
0\le x_{ij} \le 9\left(i,j\in\mathbb{N}\right)
0≤xij≤9(i,j∈N)
构造
y
=
0.
y
0
y
1
y
2
⋯
y=0.y_0y_1y_2\cdots
y=0.y0y1y2⋯
y
i
=
{
1
,
x
i
i
≠
1
2
,
x
i
i
=
1
y_i=\begin{cases} 1, &x_{ii}\neq 1\\ 2,&x_{ii} = 1 \end{cases}
yi={1,2,xii=1xii=1
y
∈
[
0
,
1
]
y\in\left[0,1\right]
y∈[0,1]但是
y
∉
f
(
N
)
y\notin f\left(\mathbb{N}\right)
y∈/f(N)
f
f
f不满射
这个方法叫康托对角线法
{ 0 , 1 1 , 1 2 , 1 3 , ⋯ } ⊆ [ 0 , 1 ] \left\{0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots\right\} \subseteq \left[0,1\right] {0,11,21,31,⋯}⊆[0,1]可见不是有限集
设 A A A是任意集合,若 [ 0 , 1 ] ∼ A \left[0,1\right]\sim A [0,1]∼A,则称 A A A的基数为 ℵ \aleph ℵ,并称 A A A是具有连续统势的集合,记为 ∣ A ∣ = ℵ \left|A\right|=\aleph ∣A∣=ℵ
定理5 设 A , B , C A, B, C A,B,C和 D D D是任意集合, A ∼ B , C ∼ D , A ∩ C = B ∩ D = ∅ A\sim B, C \sim D, A\cap C = B \cap D = \empty A∼B,C∼D,A∩C=B∩D=∅,则 A ∪ C ∼ B ∪ D A\cup C \sim B\cup D A∪C∼B∪D
证明:由于
A
∼
B
,
C
∼
D
A\sim B, C\sim D
A∼B,C∼D,存在双射
f
1
:
A
→
B
f_1:A\to B
f1:A→B和
f
2
:
C
→
D
f_2: C\to D
f2:C→D
令
f
:
A
∪
C
→
B
∪
D
f
(
x
)
=
{
f
1
(
x
)
,
x
∈
A
f
2
(
x
)
,
x
∈
C
f:A \cup C \to B \cup D\\ f\left(x\right) = \begin{cases} f_1\left(x\right), & x \in A\\ f_2\left(x\right), & x \in C\\ \end{cases}
f:A∪C→B∪Df(x)={f1(x),f2(x),x∈Ax∈C
因为
A
∩
C
=
∅
A\cap C = \empty
A∩C=∅,所以
f
f
f是一个函数,下面证明
f
f
f双射
(1)f是满射,对任意的
y
∈
B
∪
D
y\in B \cup D
y∈B∪D,则有
y
∈
B
∨
y
∈
D
y \in B \vee y \in D
y∈B∨y∈D
若
y
∈
B
y \in B
y∈B,因为
f
1
f_1
f1满射,所以有
x
∈
A
x\in A
x∈A使
y
=
f
1
(
x
)
y = f_1\left(x\right)
y=f1(x),即
x
∈
A
∪
C
x\in A \cup C
x∈A∪C,使
y
=
f
1
(
x
)
=
f
(
x
)
y= f_1\left(x\right) = f\left(x\right)
y=f1(x)=f(x)
若
y
∈
D
y\in D
y∈D,同理
故
f
f
f满射
(2)f单射。对任意的
x
1
,
x
2
∈
A
∪
C
x_1,x_2\in A\cup C
x1,x2∈A∪C,若
f
(
x
1
)
=
f
(
x
2
)
f\left(x_1\right) = f\left(x_2\right)
f(x1)=f(x2),那么
若
f
(
x
1
)
=
f
(
x
2
)
∈
B
f\left(x_1\right) = f\left(x_2\right) \in B
f(x1)=f(x2)∈B,则因为
f
(
A
)
=
B
,
f
(
C
)
=
D
,
B
∩
D
=
∅
f\left(A\right) = B,f\left(C\right)=D,B\cap D = \empty
f(A)=B,f(C)=D,B∩D=∅, 有
x
1
,
x
2
∈
A
x_1,x_2\in A
x1,x2∈A
所以
f
(
x
1
)
=
f
1
(
x
1
)
,
f
(
x
2
)
=
f
1
(
x
2
)
f\left(x_1\right) =f_1\left(x_1\right),f\left(x_2\right) =f_1\left(x_2\right)
f(x1)=f1(x1),f(x2)=f1(x2),即
f
1
(
x
1
)
=
f
1
(
x
2
)
f_1\left(x_1\right) =f_1\left(x_2\right)
f1(x1)=f1(x2)
又因为
f
1
f_1
f1单射,
x
1
=
x
2
x_1=x_2
x1=x2
若
f
(
x
1
)
=
f
(
x
2
)
∈
D
f\left(x_1\right)=f\left(x_2\right)\in D
f(x1)=f(x2)∈D,同理可证
x
1
=
x
2
x_1=x_2
x1=x2
f
f
f单射
所以 A ∪ C ∼ B ∪ D A\cup C \sim B \cup D A∪C∼B∪D
课后习题
1.设
A
A
A和
B
B
B是无限集,
C
C
C是有限集,下列集合是否一定为无限集合?为什么?
(1)
A
∩
B
A\cap B
A∩B
(2)
A
−
B
A-B
A−B
(3)
A
∪
C
A\cup C
A∪C
(4)
A
−
C
A-C
A−C
解:
(1)不一定
E
v
∩
O
v
=
∅
\mathbb{E}_v\cap \mathbb{O}_v=\empty
Ev∩Ov=∅
(2)不一定
A
−
A
=
∅
A-A=\empty
A−A=∅
(3)一定
(4)一定
4.设
A
A
A是可数无限集,
B
B
B是有限集。求下列集合的基数,并证明你的结论
(1)
A
∪
B
A\cup B
A∪B
(2)
A
−
B
A-B
A−B
解:
(1)
设
A
=
{
a
0
,
a
1
,
⋯
}
A=\left\{a_0, a_1,\cdots\right\}
A={a0,a1,⋯}
B
=
{
b
0
,
b
1
,
⋯
,
b
n
−
1
}
B=\left\{b_0,b_1,\cdots,b_{n-1}\right\}
B={b0,b1,⋯,bn−1}
不妨假设
A
−
B
=
{
a
u
0
,
a
u
1
,
⋯
}
A-B=\left\{a_{u_0},a_{u_1},\cdots\right\}
A−B={au0,au1,⋯}
构造双射函数
f
:
A
→
A
∪
B
f:A\to A\cup B
f:A→A∪B
f
(
a
i
)
=
b
i
,
i
=
0
,
1
,
⋯
,
n
−
1
f
(
a
i
)
=
a
u
n
−
i
,
i
=
n
,
n
+
1
,
⋯
f\left(a_i\right)=b_i,\quad i=0,1,\cdots,n-1\\ f\left(a_i\right)=a_{u_{n-i}},\quad i=n,n+1,\cdots
f(ai)=bi,i=0,1,⋯,n−1f(ai)=aun−i,i=n,n+1,⋯
因此
∣
A
∣
=
∣
A
∪
B
∣
=
ℵ
0
\left|A\right|=\left|A\cup B\right|=\aleph_0
∣A∣=∣A∪B∣=ℵ0
(2)
设
A
=
{
a
0
,
a
1
,
⋯
}
A=\left\{a_0, a_1,\cdots\right\}
A={a0,a1,⋯}
不妨假设
A
−
B
=
{
a
u
0
,
a
u
1
,
⋯
}
A-B=\left\{a_{u_0},a_{u_1},\cdots\right\}
A−B={au0,au1,⋯}
构造双射函数
f
:
A
→
A
∪
B
f:A\to A\cup B
f:A→A∪B
f
(
a
i
)
=
a
u
i
f\left(a_i\right)=a_{u_{i}}
f(ai)=aui
因此
∣
A
∣
=
∣
A
−
B
∣
=
ℵ
0
\left|A\right|=\left|A- B\right|=\aleph_0
∣A∣=∣A−B∣=ℵ0
参考:
离散数学(刘玉珍)