函数的合成

函数的合成

定理1:设 f : X → Y , g : Y → Z f:X\to Y, g:Y\to Z f:XY,g:YZ,则 f f f g g g的合成关系 g ∘ f g\circ f gf是从 X X X Z Z Z的函数,并且对一切 x ∈ X , g ∘ f ( x ) = g ( f ( x ) ) x\in X, g\circ f\left(x\right) = g\left(f\left(x\right)\right) xX,gf(x)=g(f(x))

证明:有关系的合成可知, f ∘ g ⊆ X × Z f\circ g\subseteq X\times Z fgX×Z。而对于任意的 x ∈ X x\in X xX,由于 f f f是函数,所以存在唯一的 y ∈ Y y\in Y yY,使 y = f ( x ) y=f\left(x\right) y=f(x);

同样由于 g g g是函数,存在唯一的 z ∈ Z z\in Z zZ,使 z = g ( y ) z=g\left(y\right) z=g(y)

即对任意的 x ∈ X x\in X xX,存在唯一的 z ∈ Z z\in Z zZ,使得 < x , z > ∈ X × Z \left<x,z\right>\in X\times Z x,zX×Z,故 g ∘ f g\circ f gf是从 X X X Z Z Z的函数,并且
z = g ( y ) = g ( f ( x ) ) z = g\left(y\right) = g\left(f\left(x\right)\right) z=g(y)=g(f(x))

定理2:设 f : X → Y , g : Y → Z , h : Z → W f:X\to Y, g:Y\to Z,h:Z\to W f:XY,g:YZ,h:ZW,则 h ∘ ( g ∘ f ) = ( h ∘ g ) ∘ f h\circ\left(g\circ f\right) = \left(h\circ g\right)\circ f h(gf)=(hg)f

(一般地,函数的合成是不可交换的)

定理3:设 f : X → Y , g : Y → Z f:X\to Y, g: Y\to Z f:XY,g:YZ,则

(1)若 f f f g g g是满射,则 g ∘ f g\circ f gf是满射

(2)若 f f f g g g是单射,则 g ∘ f g\circ f gf是单射

(3)若 f f f g g g是双射,则 g ∘ f g\circ f gf是双射

证明:

(1)对于任意的 z ∈ Z z\in Z zZ,由于 g g g是满射,所以 y ∈ Y y\in Y yY,使得 z = g ( y ) z=g\left(y\right) z=g(y)

又由于 f f f是满射,所以有 x ∈ X x\in X xX,使得 y = f ( x ) y=f\left(x\right) y=f(x)。因此有 x ∈ X x\in X xX,使得 z = g ( y ) = g ( f ( x ) ) = g ∘ f ( x ) z=g\left(y\right)=g\left(f\left(x\right)\right)=g\circ f\left(x\right) z=g(y)=g(f(x))=gf(x),故 g ∘ f g\circ f gf是满射

(2)对于任意的 x 1 , x 2 ∈ X x_1,x_2\in X x1,x2X。若 g ∘ f ( x 1 ) = g ∘ f ( x 2 ) g\circ f\left(x_1\right)=g\circ f\left(x_2\right) gf(x1)=gf(x2),即 g ( f ( x 1 ) ) = g ( f ( x 2 ) ) g\left(f\left(x_1\right)\right)=g\left(f\left(x_2\right)\right) g(f(x1))=g(f(x2))

由于 g g g是单射,所以 f ( x 1 ) = f ( x 2 ) f\left(x_1\right) = f\left(x_2\right) f(x1)=f(x2),又由于 f f f是单射,所以 x 1 = x 2 x_1=x_2 x1=x2,故 g ∘ f g\circ f gf是单射

(3)由(1)、(2)显然

定理4:设 f : X → Y , g : Y → Z f: X\to Y, g:Y\to Z f:XY,g:YZ,则

(1)若 g ∘ f g\circ f gf是满射,则 g g g是满射
(2)若 g ∘ f g\circ f gf是单射,则 f f f是单射

(3)若 g ∘ f g\circ f gf是双射,则 g g g是满射,且 f f f是单射

证明:

(1)对于任意的 z ∈ Z z\in Z zZ,由于 g ∘ f g\circ f gf是满射,所以存在 x ∈ X x\in X xX,使得 z = g ∘ f ( x ) z=g\circ f\left(x\right) z=gf(x),即 z = g ( f ( x ) ) z=g\left(f\left(x\right)\right) z=g(f(x)),因此有 y = f ( x ) ∈ Y y=f\left(x\right)\in Y y=f(x)Y,使得 z = g ( y ) z=g\left(y\right) z=g(y),故 g g g是满射
(2)对于任意的 x 1 , x 2 ∈ X x_1,x_2\in X x1,x2X,若 f ( x 1 ) = f ( x 2 ) f\left(x_1\right)=f\left(x_2\right) f(x1)=f(x2),由于 g g g是函数,所以
g ( f ( x 1 ) ) = g ( f ( x 2 ) ) g\left(f\left(x_1\right)\right)=g\left(f\left(x_2\right)\right) g(f(x1))=g(f(x2))
g ∘ f ( x 1 ) = g ∘ f ( x 2 ) g\circ f\left(x_1\right) = g\circ f\left(x_2\right) gf(x1)=gf(x2),由于 g ∘ f g\circ f gf是单射,所以有 x 1 = x 2 x_1=x_2 x1=x2,故 f f f是单射

(3)由(1),(2)显然

课后习题

2.设 f : A → A f:A\to A f:AA,存在正整数 n n n使得 f n = 1 A f^n=1_A fn=1A。证明: f f f是双射函数

证明:
f n = f n − 1 ∘ f = f ∘ f n − 1 = 1 A f^n=f^{n-1}\circ f=f\circ f^{n-1}=1_A fn=fn1f=ffn1=1A
因为 1 A 1_A 1A双射,所以 f f f双射

5.设 h ∈ A A h\in A^A hAA.证明: ∀ f ∀ g ( f ∈ A A ∧ g ∈ A A ∧ f ∘ h = g ∘ h → f = g ) \forall f\forall g\left(f\in A^A \wedge g\in A^A \wedge f\circ h=g\circ h\to f = g\right) fg(fAAgAAfh=ghf=g)当且仅当 h h h是满射

证明:

充分性:设 h h h满射
∀ x ∈ A , ∃ z ∈ A \forall x \in A, \exists z \in A xA,zA,使得 h ( z ) = x h\left(z\right)=x h(z)=x
进而, ∀ x \forall x x
f ( x ) = f ( h ( z ) ) = g ( h ( z ) ) = g ( x ) f\left(x\right)=f\left(h\left(z\right)\right)=g\left(h\left(z\right)\right)=g\left(x\right) f(x)=f(h(z))=g(h(z))=g(x)

必要性: ∀ f ∀ g ( f ∈ A A ∧ g ∈ A A ∧ f ∘ g = g ∘ h → f = g ) \forall f\forall g\left(f\in A^A \wedge g\in A^A \wedge f\circ g=g\circ h\to f = g\right) fg(fAAgAAfg=ghf=g)
∣ A ∣ = 1 \left|A\right|=1 A=1时显然成立
∣ A ∣ > 1 \left|A\right|>1 A>1时,假设 h h h不是满射
则存在 a ∈ A a\in A aA,使得 ∀ x ∈ A , h ( x ) ≠ a \forall x\in A, h\left(x\right)\neq a xA,h(x)=a

b 1 , b 2 ∈ A , b 1 ≠ b 2 b_1,b_2\in A,b_1\neq b_2 b1,b2A,b1=b2
构造函数 f , g ∈ A A f,g\in A^A f,gAA
f ( x ) = b 1 ( x ∈ A ) g ( x ) = { b 1 , x ∈ A \ { a } b 2 , x = a f\left(x\right)=b_1\left(x\in A\right)\\ g\left(x\right)=\begin{cases} b_1, &x\in A\backslash\left\{a\right\}\\ b_2, &x=a \end{cases} f(x)=b1(xA)g(x)={b1,b2,xA\{a}x=a

可以得到 f ∘ h = g ∘ h f\circ h = g\circ h fh=gh,但是 f ≠ g f\neq g f=g,矛盾
因此 h h h满射

6.设 h ∈ A A h\in A^A hAA,证明: ∀ f ∀ g ( f ∈ A A ∧ g ∈ A A ∧ h ∘ f = h ∘ g → f = g ) \forall f \forall g\left(f\in A^A \wedge g \in A^A \wedge h\circ f = h\circ g \to f =g\right) fg(fAAgAAhf=hgf=g)当且仅当 h h h是单射

证明:
充分性: h h h是单射
∀ x ∈ A \forall x \in A xA
h ( f ( x ) ) = g ( f ( x ) ) ⇒ f ( x ) = g ( x ) ⇒ f = g h\left(f\left(x\right)\right) = g\left(f\left(x\right)\right)\Rightarrow f\left(x\right)=g\left(x\right)\Rightarrow f= g h(f(x))=g(f(x))f(x)=g(x)f=g
必要性: ∀ f ∀ g ( f ∈ A A ∧ g ∈ A A ∧ h ∘ f = h ∘ g → f = g ) \forall f \forall g\left(f\in A^A \wedge g \in A^A \wedge h\circ f = h\circ g \to f =g\right) fg(fAAgAAhf=hgf=g)
∣ A ∣ = 1 \left|A\right|=1 A=1时显然成立
∣ A ∣ > 1 \left|A\right|>1 A>1时,假设 h h h不是单射,则 ∃ a , b ∈ A , a ≠ b , h ( a ) = h ( b ) \exists a,b\in A,a\neq b, h\left(a\right) = h\left(b\right) a,bA,a=b,h(a)=h(b)

构造函数 f , g ∈ A A f,g\in A^A f,gAA
f ( x ) = a g ( x ) = b f\left(x\right)=a\\ g\left(x\right) = b\\ f(x)=ag(x)=b
则对于 ∀ x ∈ A \forall x\in A xA,有
h ( f ( x ) ) = h ( a ) = h ( b ) = h ( g ( x ) ) h\left(f\left(x\right)\right)=h\left(a\right) = h\left(b\right)=h\left(g\left(x\right)\right) h(f(x))=h(a)=h(b)=h(g(x))
因此 h ∘ f = h ∘ g h\circ f = h\circ g hf=hg,但是 f ≠ g f\neq g f=g,矛盾
因此 h h h是单射

7.设集合 A ≠ ∅ , f , g ∈ A A A\neq \empty, f,g\in A^A A=,f,gAA. 若 g ∘ f ~ \widetilde{g\circ f} gf 是函数,则 f f f g g g均是单射吗?为什么?
证明:
f f f g g g均是单射

∣ A ∣ = 1 \left|A\right|=1 A=1,显然成立
∣ A ∣ > 1 \left|A\right|>1 A>1

因为 g ∘ f ~ \widetilde{g\circ f} gf 是函数, 故 f f f是单射, g g g是满射

假设 g g g不是单射,则 ∃ c , d ∈ A , c ≠ d , g ( c ) = g ( d ) \exists c, d\in A, c\neq d,g\left(c\right)=g\left(d\right) c,dA,c=d,g(c)=g(d)
由于 f f f单射, g g g满射,因此 ∃ a 1 , b a \exists a_1,b_a a1,ba,使得 f ( a 1 ) = c , f ( b 1 ) = d f\left(a_1\right)=c, f\left(b_1\right)=d f(a1)=c,f(b1)=d
(因为是 A → A A\to A AA,所以 f f f双射,所以一定存在)

a 1 ≠ b 1 a_1\neq b_1 a1=b1(否则 c = d c=d c=d
但是
g ( f ( a 1 ) ) = g ( f ( b 1 ) ) g\left(f\left(a_1\right)\right)=g\left(f\left(b_1\right)\right) g(f(a1))=g(f(b1))
g ∘ f g\circ f gf双射, a 1 = b 1 a_1=b_1 a1=b1矛盾
因此 g g g单射

参考:
离散数学(刘玉珍)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值