极值点偏移2

已知 f ( x ) = ln ⁡ x x f\left(x\right) = \frac{\ln x}{x} f(x)=xlnx,若 f ( x ) = a f\left(x\right) = a f(x)=a有两个不用的零点 x 1 , x 2 x_1, x_2 x1,x2,且 x 1 < x 2 x_1<x_2 x1<x2,求证:

(1)求 a a a的范围
f ( x ) = ln ⁡ x x f\left(x\right)=\frac{\ln x}{x} f(x)=xlnx
f ′ = 1 − ln ⁡ x x 2 f^{\prime} = \frac{1-\ln x}{x^2} f=x21lnx
极值点为 x = e x=e x=e
x ∈ ( 0 , e ) x\in\left(0,e\right) x(0,e) f f f单调递增
x ∈ ( e , + ∞ ) x\in\left(e,+\infty\right) x(e,+) f f f单调递减

lim ⁡ x → 0 + f ( x ) = − ∞ \lim\limits_{x\to 0^+} f\left(x\right) = -\infty x0+limf(x)=
lim ⁡ x → + ∞ f ( x ) = 0 \lim\limits_{x\to +\infty} f\left(x\right) = 0 x+limf(x)=0
f ( e ) = 1 e f\left(e\right) = \frac{1}{e} f(e)=e1
因此 0 < a < 1 e 0<a<\frac{1}{e} 0<a<e1

ALG不等式
x 1 x 2 < x 1 − x 2 ln ⁡ x 1 − ln ⁡ x 2 < x 1 + x 2 2 \sqrt{x_1x_2} <\frac{x_1- x_2}{\ln x_1 - \ln x_2}<\frac{x_1+x_2}{2} x1x2 <lnx1lnx2x1x2<2x1+x2

x 1 < e < x 2 x_1<e<x_2 x1<e<x2
ln ⁡ x 1 = a x 1 \ln x_1 = a x_1 lnx1=ax1
ln ⁡ x 2 = a x 2 \ln x_2 = a x_2 lnx2=ax2

(2) x 1 + x 2 > 2 a x_1+x_2 >\frac{2}{a} x1+x2>a2

x 1 + x 2 > 2 x 1 − x 2 ln ⁡ x 1 + ln ⁡ x 2 = 2 a x_1+x_2 > 2 \frac{x_1 - x_2}{\ln x_1 +\ln x_2}=\frac{2}{a} x1+x2>2lnx1+lnx2x1x2=a2

(3) x 1 + x 2 > 2 e x_1+x_2 > 2e x1+x2>2e

由(2)
x 1 + x 2 > 2 a > 2 e x_1+x_2 >\frac{2}{a}> 2e x1+x2>a2>2e

(4) x 1 + x 2 > 2 a \sqrt{x_1} + \sqrt{x_2} > \frac{2}{\sqrt{a}} x1 +x2 >a 2

x 1 + x 2 > 2 x 1 − x 2 ln ⁡ x 1 − ln ⁡ x 2 = 4 a 1 x 1 + x 2 \sqrt{x_1} + \sqrt{x_2}>2\frac{\sqrt{x_1} - \sqrt{x_2}}{\ln\sqrt{x_1}-\ln\sqrt{x_2}}=\frac{4}{a}\frac{1}{\sqrt{x_1} + \sqrt{x_2}} x1 +x2 >2lnx1 lnx2 x1 x2 =a4x1 +x2 1
因此
x 1 + x 2 > 4 a = 2 a \sqrt{x_1} + \sqrt{x_2}>\sqrt{\frac{4}{a}}=\frac{2}{\sqrt{a}} x1 +x2 >a4 =a 2

(7) x 1 x 2 < 1 a 2 x_1x_2<\frac{1}{a^2} x1x2<a21
x 1 x 2 < x 1 − x 2 ln ⁡ x 1 − ln ⁡ x 2 = 1 a \sqrt{x1x_2} < \frac{x_1 - x_2}{\ln x_1 - \ln x_2} = \frac{1}{a} x1x2 <lnx1lnx2x1x2=a1
因此
x 1 x 2 < 1 a 2 x_1x_2<\frac{1}{a^2} x1x2<a21

(5) 1 x 1 + 1 x 2 > 2 a \frac{1}{x_1}+\frac{1}{x_2} >2a x11+x21>2a

由(2)和(7)
1 x 1 + 1 x 2 = x 1 + x 2 x 1 x 2 > 2 a a 2 = 2 a \frac{1}{x_1}+\frac{1}{x_2} = \frac{x_1+x_2}{x_1x_2}>\frac{2}{a}a^2=2a x11+x21=x1x2x1+x2>a2a2=2a

(6) e 2 < x 1 x 2 e^2<x_1x_2 e2<x1x2
由(2)
x 1 x 2 = e ln ⁡ x 1 + ln ⁡ x 2 = e a ( x 1 + x 2 ) > e a 2 a = e 2 x_1x_2 = e^{\ln x_1 + \ln x_2}=e^{a\left(x_1+x_2\right)}>e^{a\frac{2}{a}}=e^2 x1x2=elnx1+lnx2=ea(x1+x2)>eaa2=e2

(9) x 1 + x 2 < − 2 ln ⁡ a a x_1 +x_2 < \frac{-2\ln a}{a} x1+x2<a2lna
由(7)
x 1 + x 2 = ln ⁡ x 1 + ln ⁡ x 2 a = ln ⁡ x 1 x 2 a < ln ⁡ 1 a 2 a = − 2 ln ⁡ a a x_1+x_2 = \frac{\ln x_1 + \ln x_2}{a}=\frac{\ln x1_x2}{a}<\frac{\ln \frac{1}{a^2}}{a}=\frac{-2\ln a}{a} x1+x2=alnx1+lnx2=alnx1x2<alna21=a2lna

(16) ( x 1 + 1 ) ( x 2 + 1 ) < 3 a 2 − 2 a + 1 \left(x_1+1\right)\left(x_2+1\right) <\frac{3}{a^2} -\frac{2}{a}+1 (x1+1)(x2+1)<a23a2+1
即证明
x 1 + x 2 + x 1 x 2 < 3 a 2 − 2 a = 3 − 2 a a 2 x_1+x_2 +x_1x_2 < \frac{3}{a^2} -\frac{2}{a}=\frac{3-2a}{a^2} x1+x2+x1x2<a23a2=a232a
由(9)和(7)
x 1 + x 2 + x 1 x 2 < − 2 ln ⁡ a a + 1 a 2 = 1 − 2 a ln ⁡ a a 2 x_1+x_2 +x_1x_2 < \frac{-2\ln a}{a} + \frac{1}{a^2} = \frac{1-2a\ln a}{a^2} x1+x2+x1x2<a2lna+a21=a212alna
即证明 1 − 2 a ln ⁡ a < 3 − 2 a 1-2a\ln a <3-2a 12alna<32a
g ( a ) = 2 a ln ⁡ a − 2 a + 2 ( 0 < a < 1 e ) g\left(a\right)=2a\ln a-2a+2\left(0<a<\frac{1}{e}\right) g(a)=2alna2a+2(0<a<e1)
g ′ ( a ) = 2 ln ⁡ a + 2 − 2 = 2 ln ⁡ a < 0 g^{\prime}\left(a\right)=2 \ln a+2-2=2\ln a <0 g(a)=2lna+22=2lna<0
g ( a ) > g ( 1 e ) = 0 g\left(a\right)>g\left(\frac{1}{e}\right)=0 g(a)>g(e1)=0
因此成立

(25) f ′ ( x 1 ) + f ′ ( x 2 ) > 0 f^{\prime}\left(x_1\right) +f^{\prime}\left(x_2\right)>0 f(x1)+f(x2)>0
由(5)
f ′ ( x 1 ) + f ′ ( x 2 ) = 1 − ln ⁡ x 1 x 1 2 + 1 − ln ⁡ x 2 x 2 2 = 1 − a x 1 x 1 2 + 1 − a x 2 x 2 2 = 1 x 1 2 x 2 2 ( x 1 2 + x 2 2 − a x 1 x 2 ( x 1 + x 2 ) ) > 1 x 1 2 x 2 2 ( x 1 2 − x 2 2 ln ⁡ x 1 − ln ⁡ x 2 − a x 1 x 2 ( x 1 + x 2 ) ) > 1 x 1 2 x 2 2 ( x 1 2 − x 2 2 a x 1 − a x 2 − a 1 a 2 ( x 1 + x 2 ) ) = 0 \begin{aligned} f^{\prime}\left(x_1\right) +f^{\prime}\left(x_2\right)&=\frac{1-\ln x_1}{x_1^2}+\frac{1-\ln x_2}{x_2^2}\\ &=\frac{1-a x_1}{x_1^2}+\frac{1-a x_2}{x_2^2}\\ &=\frac{1}{x_1^2x_2^2}\left(x_1^2+x_2^2-ax_1x_2\left(x_1+x_2\right)\right)\\ &>\frac{1}{x_1^2x_2^2}\left(\frac{x_1^2-x_2^2}{\ln x_1-\ln x_2}-ax_1x_2\left(x_1+x_2\right)\right)\\ &>\frac{1}{x_1^2x_2^2}\left(\frac{x_1^2-x_2^2}{a x_1-a x_2}-a\frac{1}{a^2}\left(x_1+x_2\right)\right)\\ &=0 \end{aligned} f(x1)+f(x2)=x121lnx1+x221lnx2=x121ax1+x221ax2=x12x221(x12+x22ax1x2(x1+x2))>x12x221(lnx1lnx2x12x22ax1x2(x1+x2))>x12x221(ax1ax2x12x22aa21(x1+x2))=0

(29)证明:当 m ≥ 1 m\ge 1 m1时, x 1 x 2 m > e m + 1 x_1x_2^m >e^{m+1} x1x2m>em+1

由(6)
x 1 x 2 m = x 1 x 2 x 2 m − 2 > e 2 e m − 2 = e m + 1 x_1 x_2^m =x_1x_2 x_2^{m-2}>e^2 e^{m-2}=e^{m+1} x1x2m=x1x2x2m2>e2em2=em+1

构造函数放缩型[同小]
g ( x ) = ln ⁡ x − 3 x − e x + e g\left(x\right) = \ln x - \frac{3x-e}{x+e} g(x)=lnxx+e3xe
g ′ ( x ) = ( x − e ) 2 ( x + e ) 2 > 0 g^{\prime}\left(x\right) = \frac{\left(x-e\right)^2}{\left(x+e\right)^2}>0 g(x)=(x+e)2(xe)2>0
g ( e ) = 0 g\left(e\right) = 0 g(e)=0
因此 x < e x<e x<e时, ln ⁡ x < 3 x − e x + e \ln x < \frac{3x-e}{x+e} lnx<x+e3xe
x > e x>e x>e时, ln ⁡ x > 3 x − e x + e \ln x > \frac{3x-e}{x+e} lnx>x+e3xe

(12)
3 x − e x + e = a x ⇒ a x 2 + ( a e − 3 ) x + e = 0 \frac{3x-e}{x+e}=ax\Rightarrow ax^2+\left(ae-3\right)x+e=0 x+e3xe=axax2+(ae3)x+e=0
Δ = ( a e − 1 ) ( a e − 9 ) > 0 \Delta = \left(ae-1\right)\left(ae-9\right)>0 Δ=(ae1)(ae9)>0
x 3 , x 4 x_3,x_4 x3,x4 3 x − e x + e = a x \frac{3x-e}{x+e}=ax x+e3xe=ax的两个根
x 3 x 4 = e a x_3x_4 = \frac{e}{a} x3x4=ae

在这里插入图片描述
根据图像 x 3 < x 1 < e < x 2 < x 4 x_3 < x_1 < e < x_2 < x4 x3<x1<e<x2<x4
因此
x 1 x 2 > x 3 x 4 = e a x_1 x_2 > x_3 x_4 = \frac{e}{a} x1x2>x3x4=ae

(11) ln ⁡ x 1 + ln ⁡ x 2 > 1 − ln ⁡ a \ln x_1 + \ln x_2 >1-\ln a lnx1+lnx2>1lna
由(12)
ln ⁡ x 1 + ln ⁡ x 2 = ln ⁡ x 1 x 2 > 1 − ln ⁡ a \ln x_1 +\ln x_2=\ln x_1 x_2 >1-\ln a lnx1+lnx2=lnx1x2>1lna

(10) x 1 + x 2 > 1 − ln ⁡ a a x_1 + x_2 >\frac{1-\ln a}{a} x1+x2>a1lna
x 1 + x 2 = ln ⁡ x 1 + ln ⁡ x 2 a > 1 − ln ⁡ a a x_1 + x_2 =\frac{\ln x_1 +\ln x_2}{a}>\frac{1-\ln a}{a} x1+x2=alnx1+lnx2>a1lna

(8) x 1 + x 2 > 3 a − e x_1 + x_2 > \frac{3}{a}-e x1+x2>a3e
g ( a ) = − 2 − ln ⁡ a + e a g\left(a\right) = -2-\ln a +ea g(a)=2lna+ea
g ′ ( a ) = − 1 a + e < 0 g^{\prime}\left(a\right)=-\frac{1}{a}+e<0 g(a)=a1+e<0
g ( a ) > g ( 1 a ) = 0 g\left(a\right)>g\left(\frac{1}{a}\right)=0 g(a)>g(a1)=0

由(10)
x 1 + x 2 > 1 − ln ⁡ a a > 3 a − e x_1 + x_2 >\frac{1-\ln a}{a}> \frac{3}{a}-e x1+x2>a1lna>a3e
(17) x 1 2 x 2 + x 2 2 x 1 > 2 e a 2 x_1^2 x_2 +x_2^2 x_1 >\frac{2e}{a^2} x12x2+x22x1>a22e
由(2),(12)
x 1 2 x 2 + x 2 2 x 1 = x 1 x 2 ( x 1 + x 2 ) > e a 2 a = 2 e a 2 x_1^2 x_2 +x_2^2 x_1=x_1 x_2\left(x_1+x_2\right)>\frac{e}{a}\frac{2}{a}=\frac{2e}{a^2} x12x2+x22x1=x1x2(x1+x2)>aea2=a22e

构造函数放缩型[同大]
g ( x ) = ln ⁡ x − x 2 e + e 2 x − 1 g\left(x\right) = \ln x -\frac{x}{2e}+\frac{e}{2x}-1 g(x)=lnx2ex+2xe1
g ′ ( x ) = − ( x − e ) 2 2 e x 2 < 0 g^{\prime}\left(x\right) = -\frac{\left(x-e\right)^2}{2ex^2}<0 g(x)=2ex2(xe)2<0
x < e x<e x<e时, ln ⁡ x > x 2 e − e 2 x + 1 \ln x> \frac{x}{2e}-\frac{e}{2x}+1 lnx>2ex2xe+1
x > e x>e x>e时, ln ⁡ x < x 2 e − e 2 x + 1 \ln x< \frac{x}{2e}-\frac{e}{2x}+1 lnx<2ex2xe+1

(13) 1 x 1 + 1 x 2 > 2 e \frac{1}{x_1}+\frac{1}{x_2} > \frac{2}{e} x11+x21>e2

x 2 e − e 2 x + 1 = a x ⇒ ( 2 a e − 1 ) x 2 − 2 e x + e 2 = 0 \frac{x}{2e}-\frac{e}{2x}+1 = ax \Rightarrow \left(2ae -1\right)x^2-2ex+e^2=0 2ex2xe+1=ax(2ae1)x22ex+e2=0
Δ = 8 e 2 ( 1 − a e ) > 0 \Delta=8e^2\left(1-ae\right)>0 Δ=8e2(1ae)>0
x 2 e − e 2 x + 1 = a x \frac{x}{2e}-\frac{e}{2x}+1 = ax 2ex2xe+1=ax两个根为 x 5 , x 6 x_5, x_6 x5,x6
在这里插入图片描述

x 1 < x 5 < e < x 2 < x 6 x_1 <x_5 < e<x_2 < x_6 x1<x5<e<x2<x6
x 5 + x 6 = 2 e 2 a e − 1 x_5+x_6 = \frac{2e}{2ae-1} x5+x6=2ae12e
x 5 x 6 = e 2 2 a e − 1 x_5x_6 = \frac{e^2}{2ae-1} x5x6=2ae1e2

1 x 1 + 1 x 2 > 1 x 5 + 1 x 6 = x 5 + x 6 x 5 x 6 = 2 e \frac{1}{x_1}+\frac{1}{x_2} >\frac{1}{x_5}+\frac{1}{x_6}=\frac{x_5+x_6}{x_5x_6}=\frac{2}{e} x11+x21>x51+x61=x5x6x5+x6=e2

(15) 1 ln ⁡ x 1 + 1 ln ⁡ x 2 > 2 a e \frac{1}{\ln x_1} + \frac{1}{\ln x_2} > 2ae lnx11+lnx21>2ae
由(13)
1 ln ⁡ x 1 + 1 ln ⁡ x 2 = 1 a ( 1 x 1 + 1 x 2 ) = 2 a e > 2 a e \frac{1}{\ln x_1} + \frac{1}{\ln x_2}=\frac{1}{a}\left(\frac{1}{x_1}+\frac{1}{x_2}\right)=\frac{2}{ae}>2ae lnx11+lnx21=a1(x11+x21)=ae2>2ae

构造函数放缩型[间距减小]
g ( x ) = ln ⁡ x − 2 + e x g\left(x\right)=\ln x - 2 +\frac{e}{x} g(x)=lnx2+xe
g ′ ( x ) = x − e x 2 g^{\prime}\left(x\right)=\frac{x-e}{x^2} g(x)=x2xe
g ( x ) ≥ g ( e ) = 0 g\left(x\right)\ge g\left(e\right)=0 g(x)g(e)=0
当且仅当 x = e x=e x=e g ( x ) = 0 g\left(x\right)=0 g(x)=0

(19) x 1 < 1 − 1 − a e a x_1 < \frac{1-\sqrt{1-ae}}{a} x1<a11ae
2 − e x = a x ⇒ a x 2 − 2 x + e = 0 2-\frac{e}{x}=ax\Rightarrow ax^2-2x+e=0 2xe=axax22x+e=0
Δ = 4 ( 1 − a e ) > 0 \Delta = 4\left(1-ae\right)>0 Δ=4(1ae)>0
2 − e x = a x 2-\frac{e}{x}=ax 2xe=ax的根为 x 7 , x 8 x_7,x_8 x7,x8
x 7 = 1 − 1 − a e a , x 8 = 1 + 1 − a e a x_7=\frac{1-\sqrt{1-ae}}{a},x_8=\frac{1+\sqrt{1-ae}}{a} x7=a11ae ,x8=a1+1ae

在这里插入图片描述
x 1 < x 7 < x 8 < x 2 x_1<x_7<x_8<x_2 x1<x7<x8<x2
因此
x 1 < 1 − 1 − a e a x_1 < \frac{1-\sqrt{1-ae}}{a} x1<a11ae

(20) x 2 > 1 + 1 − a e a x_2>\frac{1+\sqrt{1-ae}}{a} x2>a1+1ae
由(19)成立

(18) x 1 x 2 < a e \frac{x_1}{x_2}<ae x2x1<ae
x 1 x 2 < 1 − 1 − a e a a 1 + 1 − a e = 1 − 1 − a e 1 + 1 − a e = a e ( 1 + 1 − a e ) 2 < a e \frac{x_1}{x_2}<\frac{1-\sqrt{1-ae}}{a}\frac{a}{1+\sqrt{1-ae}}=\frac{1-\sqrt{1-ae}}{1+\sqrt{1-ae}}=\frac{ae}{\left(1+\sqrt{1-ae}\right)^2}<ae x2x1<a11ae 1+1ae a=1+1ae 11ae =(1+1ae )2ae<ae

(21) x 2 − x 1 > 2 1 − a e a x_2-x_1>\frac{2\sqrt{1-ae}}{a} x2x1>a21ae
由(19),(20)显然

(22) x 2 − x 1 > 1 − a e a x_2-x_1>\frac{\sqrt{1-ae}}{a} x2x1>a1ae
由(21)显然

(23) x 2 − x 1 > 1 − a e x_2-x_1>\sqrt{1-ae} x2x1>1ae
由(22)显然

(24) x 2 − x 1 > 2 e a − e 2 x_2-x_1>2\sqrt{\frac{e}{a}-e^2} x2x1>2aee2
由(21)
x 2 − x 1 > 2 1 − a e a > 2 e a − e 2 = 2 e a 1 − a e x_2-x_1>\frac{2\sqrt{1-ae}}{a}>2\sqrt{\frac{e}{a}-e^2}=2\sqrt{\frac{e}{a}}\sqrt{1-ae} x2x1>a21ae >2aee2 =2ae 1ae

(26) x 2 − x 1 > ( e 2 − 2 ) ( 1 − a e ) x_2-x_1>\left(e^2-2\right)\left(1-ae\right) x2x1>(e22)(1ae)

e ≈ 2.718 e \approx 2.718 e2.718
3 ≈ 1.73 \sqrt{3}\approx 1.73 3 1.73
因此 e < 3 + 1 e<\sqrt{3}+1 e<3 +1
e 2 − 2 − 2 e = ( e + 3 − 1 ) ( e − 3 − 1 ) < 0 e^2-2-2e=\left(e+\sqrt{3}-1\right)\left(e-\sqrt{3}-1\right)<0 e222e=(e+3 1)(e3 1)<0
由(21)
x 2 − x 1 > 2 1 − a e a > 2 e 1 − a e > ( e 2 − 2 ) 1 − a e > ( e 2 − 2 ) ( 1 − a e ) x_2-x_1>\frac{2\sqrt{1-ae}}{a}>2e\sqrt{1-ae}>\left(e^2-2\right)\sqrt{1-ae}>\left(e^2-2\right)\left(1-ae\right) x2x1>a21ae >2e1ae >(e22)1ae >(e22)(1ae)
(27) x 2 − x 1 > 2 ( e − 2 ) 1 − a e x_2-x_1>2\left(e-2\right)\sqrt{1-ae} x2x1>2(e2)1ae
由(21)
x 2 − x 1 > 2 1 − a e a > 2 e 1 − a e > 2 ( e − 2 ) 1 − a e x_2-x_1>\frac{2\sqrt{1-ae}}{a}>2e\sqrt{1-ae}>2\left(e-2\right)\sqrt{1-ae} x2x1>a21ae >2e1ae >2(e2)1ae

切线放缩[间距增大]及特殊非对称式
(28) x 2 − x 1 < 4 e 3 2 − 1 − ( 2 e 2 + 1 ) a ( 3 2 e 3 2 < a < 1 e ) x_2-x_1 < 4e^{\frac{3}{2}}-1-\left(2e^2+1\right)a\left(\frac{3}{2e^{\frac{3}{2}}}<a<\frac{1}{e}\right) x2x1<4e231(2e2+1)a(2e233<a<e1)

(30)若 1 a < ( 1 − m ) x 1 + m x 2 \frac{1}{a}<\left(1-m\right)x_1+m x_2 a1<(1m)x1+mx2恒成立,求 m m m的取值范围
m > 1 a − x 1 x 2 − x 1 m>\frac{\frac{1}{a}-x_1}{x_2-x_1} m>x2x1a1x1
s = x 2 − 1 a s=x_2-\frac{1}{a} s=x2a1
t = 1 a − x 1 t=\frac{1}{a}-x_1 t=a1x1
1 a − x 1 x 2 − x 1 = t s + t = 1 1 + s t \frac{\frac{1}{a}-x_1}{x_2-x_1}=\frac{t}{s+t}=\frac{1}{1+\frac{s}{t}} x2x1a1x1=s+tt=1+ts1

由(19),(20)
s t > 1 + 1 − a e a − 1 a 1 a − 1 − 1 − a e a = 1 \frac{s}{t}>\frac{\frac{1+\sqrt{1-ae}}{a}-\frac{1}{a}}{\frac{1}{a}-\frac{1-\sqrt{1-ae}}{a}}=1 ts>a1a11ae a1+1ae a1=1
因此
1 1 + s t < 1 2 \frac{1}{1+\frac{s}{t}}<\frac{1}{2} 1+ts1<21
因此
m ∈ [ 1 2 , + ∞ ] m\in\left[\frac{1}{2},+\infty\right] m[21,+]

(14) 2 ln ⁡ x 1 + ln ⁡ x 2 > e 2\ln x_1 + \ln x_2 >e 2lnx1+lnx2>e

参考:
https://www.zhihu.com/question/442349127/answer/1711515692

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值