深度学习之特征工程 Feature Engineering 特征比分类器更重要,几种特征工程的方法: 1、预处理:经过数据的预处理,如去除噪声等。比如在文本分类中,去除停用词等; 2、特征提取:从原始数据中提取一些有效的特征。比如在图像分类中提取边缘、尺度不变特征变换特征等。 3、特征转换:对特征进行一定的加工,比如降维和升维。降维包括: 特征提取:PCA、LDA 特征选择:互信息、TF-IDF 深度学习 = 表示学习+浅层学习 单个神经细胞只有两种状态:兴奋和抑制。