深度学习之特征工程

深度学习之特征工程

Feature Engineering

特征比分类器更重要,几种特征工程的方法:
1、预处理:经过数据的预处理,如去除噪声等。比如在文本分类中,去除停用词等;
2、特征提取:从原始数据中提取一些有效的特征。比如在图像分类中提取边缘、尺度不变特征变换特征等。
3、特征转换:对特征进行一定的加工,比如降维和升维。降维包括:
特征提取:PCA、LDA
特征选择:互信息、TF-IDF
数据处理过程

深度学习 = 表示学习+浅层学习
在这里插入图片描述
单个神经细胞只有两种状态:兴奋和抑制。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值