cz_xuyixuan的博客

当我跨过沉沦的一切,向永恒开战的时候,你是我的军旗。

排序:
默认
按更新时间
按访问量

【BZOJ3534】【SDOI2014】重建

【题目链接】点击打开链接【思路要点】无向图的生成树,考虑矩阵树定理。若一条边出现的概率为\(P_i\),则令其权值为\(\frac{P_i}{1-P_i}\)。构造基尔霍夫矩阵,令其去掉一行一列的行列式为\(Det\)。则答案为\(Det*\prod_{i\in E}(1-P_i)\)。注意到可能...

2018-05-23 20:55:35

阅读数:9

评论数:0

【BZOJ3533】【SDOI2014】向量集

【题目链接】点击打开链接【思路要点】考虑点积的几何意义,应当为向量的模长乘以另一个向量对其投影的长度。为了使投影长度最长,我们显然只会找点集的凸包上的点。同时,当极角相差在\(\pi\)以内时(也即点集是一个凸壳时),凸包上的点与所求向量的点积为一个单峰函数。用线段树维护向量集合,每个节点上维护其...

2018-05-23 20:45:49

阅读数:7

评论数:0

【BZOJ3532】【SDOI2014】Lis

【题目链接】点击打开链接【思路要点】DP+拆点最小割可以解决第一问。按\(C_i\)从小到大考虑每一个点是否可以在最优解中被删除。首先,若该点内部的边没有满流,那么这条边一定不在最小割上,故该点不可能在最优解中被删除。否则我们考虑退掉该点内部边的在残量网络上的流量,并将其删去。具体退流的过程可以通...

2018-05-23 20:36:34

阅读数:4

评论数:0

【BZOJ3530】【SDOI2014】数数

【题目链接】点击打开链接【思路要点】对模式串建立AC自动机,在上面数位DP即可。注意模式串可能包含前导零。时间复杂度\(O(N*L)\)。【代码】#include<bits/stdc++.h> using namespace std; const int...

2018-05-23 11:20:04

阅读数:2

评论数:0

【BZOJ3531】【SDOI2014】旅行

【题目链接】点击打开链接【思路要点】树链剖分,对每个信仰开一棵线段树即可。时间复杂度\(O(N+QLog^2N)\)。【代码】#include<bits/stdc++.h> using namespace std; const int MAXN = 10...

2018-05-23 11:14:22

阅读数:3

评论数:0

【LOJ2585】「APIO2018」新家

【题目链接】点击打开链接【思路要点】对时间轴进行扫描线,在时间轴上的一段区间可以表示为一次插入操作和一次删除操作。问题被转化为:维护一个序列,支持在某处插入/删除一个数,以及询问以某个位置为中心,包含所有种类的数的区间的最小长度。对于询问,不难想到二分答案,二分答案后我们需要支持的是询问区间内是否...

2018-05-23 11:01:27

阅读数:8

评论数:0

【LOJ2586】「APIO2018」选圆圈

【题目链接】点击打开链接【思路要点】将坐标系以原点为中心旋转一定角度,对圆心建立KDTree。模拟题目中的过程,利用KDTree的子树信息进行剪枝。最坏时间复杂度\(O(N^2)\),期望时间复杂度\(O(NLogN)\)。【代码】/*Double Version, Faster but Lowe...

2018-05-23 10:43:53

阅读数:3

评论数:0

【LOJ2587】「APIO2018」铁人两项

【题目链接】点击打开链接【思路要点】首先我们来证明点双连通分量的一个性质。引理:在一个点双连通分量中,给定任意三个不同的点\(a\),\(b\),\(c\),一定存在一条从\(a\)到\(c\)的,经过每个点至多一次的简单路径经过了\(b\)。证明:考虑网络流。在原图中存在无向边的点对之间建立无向...

2018-05-22 18:01:49

阅读数:7

评论数:0

【BZOJ2117】【2010国家集训队】Crash的旅游计划

【题目链接】点击打开链接【思路要点】补档博客,无题解。【代码】#include<bits/stdc++.h> using namespace std; #define MAXN 100005 template <typename T...

2018-05-22 14:45:34

阅读数:1

评论数:0

【BZOJ3622】已经没有什么好害怕的了

【题目链接】点击打开链接【思路要点】令\(K=\frac{N+K}{2}\),问题等价于存在恰好\(K\)对大于关系的最大匹配数。直接DP难以表示状态,考虑容斥原理。我们选定一个\(A\)中的集合,规定该集合中的点一定要大于\(B\)集合中与其相匹配的点,其余点不做要求,将符合条件的方案数加入\(...

2018-05-22 14:38:46

阅读数:4

评论数:0

【BZOJ4317】Atm的树

【题目链接】点击打开链接【思路要点】补档博客,无题解。【代码】#include<bits/stdc++.h> using namespace std; #define MAXN 100005 template <typename T...

2018-05-21 20:10:36

阅读数:3

评论数:0

【BZOJ3771】Triple

【题目链接】点击打开链接【思路要点】分别考虑丢失1把、2把、3把斧子的方案数。定义多项式\(A\),满足\(A_i=[i\ exist\ in\ input]\)。丢失1把斧子的方案数显然就是\(A_i\)。丢失2把斧子的方案数可以通过容斥原理计算,考虑先计算出\(B=A^2\)。对于一种方案\(...

2018-05-21 18:42:52

阅读数:4

评论数:0

【BZOJ3879】SvT

【题目链接】点击打开链接【思路要点】补档博客,无题解。【代码】#include<bits/stdc++.h> using namespace std; #define MAXN 1000005 #define MAXM 3000005 #define M...

2018-05-21 16:54:56

阅读数:5

评论数:0

【BZOJ4767】两双手

【题目链接】点击打开链接【思路要点】平面内每一个点可以被两个向量唯一确定,因此我们可以将平面内每一个点\(P\)唯一表示为\(A*x+B*y\)的形式,一下简称\((x,y)\)。显然,当\(x\)或\(y\)不是整数,这个点可以被忽略。现在问题被我们转化为了\(A=(1,0)\),\(B=(0,...

2018-05-21 16:50:38

阅读数:7

评论数:0

【BZOJ2555】SubString

【题目链接】点击打开链接【思路要点】补档博客,无题解。【代码】#include<bits/stdc++.h> using namespace std; #define MAXN 1200005 #define MAXM 3000005 template ...

2018-05-21 11:24:48

阅读数:7

评论数:0

【BZOJ2839】集合计数

【题目链接】点击打开链接【思路要点】直接上容斥原理。令\(M=N-K\),\(Ans=\binom{N}{M}*\sum_{i=0}^{M}(-1)^{M-i}*\binom{M}{i}*(2^{2^i}-1)\)时间复杂度\(O(N+MLogN)\)。【代码】#include&l...

2018-05-21 11:21:32

阅读数:5

评论数:0

【BZOJ1180】【CROATIAN2009】OTOCI

【题目链接】点击打开链接【思路要点】动态树模板题。时间复杂度\(O(QLogN)\)。【代码】#include<bits/stdc++.h> using namespace std; #define MAXN 30005 template &am...

2018-05-21 10:37:00

阅读数:5

评论数:0

【BZOJ4710】【JSOI2011】分特产

【题目链接】点击打开链接【思路要点】直接上容斥原理。时间复杂度\(O(NM)\)。【代码】#include<bits/stdc++.h> using namespace std; const int MAXN = 5005; const int P = ...

2018-05-21 10:32:18

阅读数:2

评论数:0

【BZOJ3509】【CodeChef】COUNTARI

【题目链接】点击打开链接【思路要点】补档博客,无题解。【代码】#include<bits/stdc++.h> using namespace std; #define MAXN 200005 #define MAXV 30005 #define MAXM...

2018-05-20 20:25:58

阅读数:3

评论数:0

【BZOJ1487】【HNOI2009】无归岛

【题目链接】点击打开链接【思路要点】没有任何四个点或两个点的图满足题目中对岛的定义,因此题目叙述中的每一个岛或是一个三元环,或是一个点。因此原图数一个仙人掌,建立圆方树,并进行树形DP。对于圆点\(i\),记\(dp_{i,0}\)表示不选取\(i\),\(i\)子树的最大答案,\(dp_{i,1...

2018-05-20 20:22:47

阅读数:6

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭