【定理简介】
- Cayley-Hamilton定理的叙述如下:设\(A\)是数域\(P\)上的\(N\)阶矩阵,其特征多项式\(p(\lambda)=|\lambda E-A|=\lambda^N+b_1\lambda^{N-1}+b_2\lambda^{N-2}+...+b_{N-1}\lambda+b_N\)。
- 则\(p(A)=A^N+b_1A^{N-1}+b_2A^{N-2}+...+b_{N-1}A+b_N=O\),即\(p(\lambda)\)为化零多项式。
- 由Cayley-Hamilton定理,我们可以将常系数其次线性递推的矩阵乘法优化的时间复杂度从\(O(N^3LogK)\)优化至\(O(N^2LogK)\)乃至\(O(NLogNLogK)\)(本文不对此进行讨论)。
【算法流程】

Cayley-Hamilton定理表明矩阵的特征多项式可以化简矩阵运算,将常系数其次线性递推的矩阵乘法时间复杂度优化。通过该定理,可以将(M^k)表示为(E,M,M^2,...,M^{N-1})的线性组合,从而高效计算(M^k*B)。"
117195471,8753399,Boost库:bind绑定与数据成员的高级应用测试,"['C++编程', ' Boost库', '函数绑定', '数据成员', '程序设计']
最低0.47元/天 解锁文章
7847





