【学习笔记】Cayley-Hamilton定理

Cayley-Hamilton定理表明矩阵的特征多项式可以化简矩阵运算,将常系数其次线性递推的矩阵乘法时间复杂度优化。通过该定理,可以将(M^k)表示为(E,M,M^2,...,M^{N-1})的线性组合,从而高效计算(M^k*B)。" 117195471,8753399,Boost库:bind绑定与数据成员的高级应用测试,"['C++编程', ' Boost库', '函数绑定', '数据成员', '程序设计']
摘要由CSDN通过智能技术生成

【定理简介】

  • Cayley-Hamilton定理的叙述如下:设\(A\)是数域\(P\)上的\(N\)阶矩阵,其特征多项式\(p(\lambda)=|\lambda E-A|=\lambda^N+b_1\lambda^{N-1}+b_2\lambda^{N-2}+...+b_{N-1}\lambda+b_N\)。
  • 则\(p(A)=A^N+b_1A^{N-1}+b_2A^{N-2}+...+b_{N-1}A+b_N=O\),即\(p(\lambda)\)为化零多项式。
  • Cayley-Hamilton定理,我们可以将常系数其次线性递推的矩阵乘法优化的时间复杂度从\(O(N^3LogK)\)优化至\(O(N^2LogK)\)乃至\(O(NLogNLogK)\)(本文不对此进行讨论)。

【算法流程】

  • 考虑常系数其次线性递推\(h_i=\sum_{j=1}^{N}a_j*h_{i-j}(i>N)\)的转移矩阵\(M\)的特征多项式\(p(\lambda)\),将行列式按第一行展开,有\
  • 11
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值