【学习笔记】Berlekamp-Massey算法

【算法简介】

  • Berlekamp-Massey算法,常简称为BM算法,是用来求解一个数列的最短线性递推式的算法。
  • BM算法可以在\(O(N^2)\)的时间内求解一个长度为\(N\)的数列的最短线性递推式。
  • 在当今OI竞赛界,尚没有很多BM算法的应用,但在一些输入的数很少的题目中,BM能够成为发掘题目性质的一大助力,甚至有可能直接解出答案的线性递推式,不失为一种不错的工具。

【算法流程】

  • 对于数列\(\{a_1,a_2,a_3,...,a_n\}\),我们称数列\(\{r_1,r_2,r_3,...,r_m\}\)为其线性递推式当且仅当\(a_i=\sum_{j=1}^{m}r_j*a_{i-j}\)对于任意\(m+1≤i≤n\)均成立。
  • 若数列\(\{a_1,a_2,a_3,...,a_n\}\)的线性递推式\(\{r_1,r_2,r_3,...,r_m\}\)还满足\(m\)是所有该数列的线性递推式中最小的,则称\(\{r_1,r_2,r_3,...,r_m\}\)为数列\(\{a_1,a_2,a_3,...,a_n\}\)的最短线性递推式。
  • 现在考虑我们已经求得了\(\{a_1,a_2,a_3,...,a_{i-1}\}\)的最短线性递推式\(\{r_1,r_2,r_3,...,r_m\}\),如何求得\(\{a_1,a_2,a_3,...,a_i\}\)的最短线性递推式。
  • 定义\(\{a_1,a_2,a_3,...,a_{i-1}\}\)的最短线性递推式\(\{r_1,r_2,r_3,...,r_m\}\)为当前递推式,记递推式被更改的次数为\(cnt\),第\(i\)次更改后的递推式为\(R_i\),特别地,定义\(R_0\)为空,那么当前递推式应当为\(R_{cnt}\)。
  • 记\(delta_i=a_i-\sum_{j=1}^{m}r_j*a_{i-j}\),其中\(\{r_1,r_2,r_3,...,r_m\}\)为当前递推式,显然若\(delta_i=0\),那么当前递推式就是\(\{a_1,a_2,a_3,...,a_i\}\)的最短线性递推式。
  • 否则,我们认为\(R_{cnt}\)在\(a_i\)处出错了,定义\(fail_i\)为\(R_i\)最早的出错位置,则有\(fail_{cnt}=i\)。
  • 考虑对\(R_{cnt}\)进行修改,使其变为\(R_{cnt+1}\),并在\(a_i\)处同样成立。
  • 若\(cnt=0\),这意味着\(a_i\)是序列中第一个非零元素,我们可以令\(R_{cnt+1}=\{0,0,0,...,0\}\),即用\(i\)个0填充线性递推式,此时由于不存在\(j\)使得\(m+1≤j≤i\),因此\(R_{cnt+1}\)显然为\(\{a_1,a_2,a_3,...,a_i\}\)的线性递推式,并且由于\(a_i\)是序列中第一个非零元素,不难证明\(R_{cnt+1}\)也是\(\{a_1,a_2,a_3,...,a_i\}\)的最短线性递推式。
  • 否则,即\(cnt>0\),考虑\(R_{cnt-1}\)出错的位置\(fail_{cnt-1}\),记\(mul=\frac{delta_i}{delta_{fail_{cnt-1}}}\)。
  • 我们希望得到数列\(R'=\{r'_1,r'_2,r'_3,...,r'_{m'}\}\),使得\(\sum_{j=1}^{m'}r'_j*a_{k-j}=0\)对于任意\(m'+1≤k≤i-1\)均成立,并且\(\sum_{j=1}^{m'}r'_j*a_{i-j}=delta_i\)。如果能够找到这样的数列\(R'\),那么令\(R_{cnt+1}=R_{cnt}+R'\)即可(其中\(+\)定义为各位分别相加)。
  • 数列\(R'\)可以是下述数列:\(\{0,0,0,...,0,mul,-mul*R_{cnt-1}\}\)即填充\(i-fail_{cnt-1}-1\)个零,然后将数列\(\{1,-R_{cnt-1}\}\)的\(mul\)倍放在后面。此时有\(\sum_{j=1}^{m'}r'_j*a_{i-j}=delta_{fail_{cnt-1}}*mul=delta_i\),并且\(\sum_{j=1}^{m'}r'_j*a_{k-j}=0\)对于任意\(m'+1≤k≤i-1\)均成立
  • 故令\(R_{cnt+1}=R_{cnt}+R'\)即可。
  • 在最坏情况下,我们可能需要对数列进行\(O(N)\)次修改,因此该算法的时间复杂度为\(O(N^2)\)。

【一组实例】

  • 以数列\(\{1,2,4,9,20,40,90\}\)为例,我们来具体地理解一下算法流程。
  • 初始时,我们有\(R_0=\{\},cnt=0\)。
  • \(i=1\)时,将\(a_1=1\)代入递推式,得到\(delta_1=1\),\(R_0\)在\(i=1\)时出错,记\(fail_0=1\)。由于此时\(cnt=0\),我们将递推式修改为\(R_1=\{0\}\)。
  • \(i=2\)时,将\(a_2=2\)代入递推式,得到\(delta_2=2\),\(R_1\)在\(i=2\)时出错,记\(fail_1=2\)。此时\(mul=2\),可以构造得到\(R'=\{2\}\),递推式被修改为\(R_2=\{2\}\)。
  • \(i=3\)时,将\(a_3=4\)代入递推式,得到\(delta_3=0\),\(R_2\)没有出错。
  • \(i=4\)时,将\(a_4=9\)代入递推式,得到\(delta_4=1\),\(R_2\)在\(i=4\)时出错,记\(fail_2=4\)。此时\(mul=0.5\),可以构造得到\(R'=\{0,0.5,0\}\),递推式被修改为\(R_3=\{2,0.5,0\}\)。
  • \(i=5\)时,将\(a_5=20\)代入递推式,得到\(delta_5=0\),\(R_3\)没有出错。
  • \(i=6\)时,将\(a_6=40\)代入递推式,得到\(delta_6=-4.5\),\(R_3\)在\(i=6\)时出错,记\(fail_3=6\)。此时\(mul=-4.5\),可以构造得到\(R'=\{0,-4.5,9\}\),递推式被修改为\(R_4=\{2,-4,9\}\)。
  • \(i=7\)时,将\(a_7=90\)代入递推式,得到\(delta_7=9\),\(R_4\)在\(i=7\)时出错,记\(fail_4=7\)。此时\(mul=-2\),可以构造得到\(R'=\{-2,4,1,0\}\),递推式被修改为\(R_5=\{0,0,10,0\}\)。
  • 因此以数列\(\{1,2,4,9,20,40,90\}\)的递推式即为\(R_5=\{0,0,10,0\}\)。

【代码】

  • 以下代码实现了求解给定\(N\)元数列在实数域上的最短线性递推式。
  • 显然,BM算法只需要数域中每个非零元素均存在乘法逆元即可实现,读者不妨自行实现一下在模质数意义下的BM算法。
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2005;
const double eps = 1e-8;
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
int cnt, fail[MAXN];
double val[MAXN], delta[MAXN];
vector <double> ans[MAXN];
int main() {
	int n; read(n);
	for (int i = 1; i <= n; i++)
		scanf("%lf", &val[i]);
	for (int i = 1; i <= n; i++) {
		double tmp = val[i];
		for (unsigned j = 0; j < ans[cnt].size(); j++)
			tmp -= ans[cnt][j] * val[i - j - 1];
		delta[i] = tmp;
		if (fabs(tmp) <= eps) continue;
		fail[cnt] = i;
		if (cnt == 0) {
			ans[++cnt].resize(i);
			continue;
		}
		double mul = delta[i] / delta[fail[cnt - 1]];
		cnt++; ans[cnt].resize(i - fail[cnt - 2] - 1);
		ans[cnt].push_back(mul);
		for (unsigned j = 0; j < ans[cnt - 2].size(); j++)
			ans[cnt].push_back(ans[cnt - 2][j] * -mul);
		if (ans[cnt].size() < ans[cnt - 1].size()) ans[cnt].resize(ans[cnt - 1].size());
		for (unsigned j = 0; j < ans[cnt - 1].size(); j++)
			ans[cnt][j] += ans[cnt - 1][j];
	}
	for (unsigned i = 0; i < ans[cnt].size(); i++)
		cout << ans[cnt][i] << ' ';
	return 0;
}


### 回答1: Berlekamp-Massey算法是一种线性复杂度算法,用于在一个序列中求出最短的线性递推序列。它可以用来检测线性级别的纠错码,并在检测到错误时纠正这些错误。该算法于1967年由Elwyn Berlekamp和James Massey首先提出。 ### 回答2: Berlekamp-Massey算法是线性递推序列的一个求解算法,主要用于加密算法、编码和错误校验码等。 对于一个由$a_0, a_1, a_2, ..., a_n$组成的序列,如果它是一个线性递推序列,则存在$f(x)=f_0+f_1x+f_2x^2+...+f_nx^n$和$g(x)=g_0+g_1x+g_2x^2+...+g_nx^n$满足以下条件: 1. $f(x)a_n+f_1(x)a_{n-1}+f_2(x)a_{n-2}+...+f_n(x)a_0=0$ 2. $f(x)g(x)=1+0x+0x^2+...+0x^{2n}$ 其中$f(x)$和$g(x)$都是多项式,系数都属于$GF(2)$域,即所有系数都为$0$或$1$。 Berlekamp-Massey算法的核心思想是通过不断更新推导出$f(x)$多项式,从而确定序列是否为线性递推序列。具体操作如下: 1. 初始化$f(x)=a_0$和$g(x)=1$ 2. 设$i=0$,继续下面的步骤。 3. 如果$f(x)$使得$f(x)a_i+f_1(x)a_{i-1}+f_2(x)a_{i-2}+...+f_i(x)a_{i-i}=0$,则跳过下一步。 4. 否则更新$f(x)$和$g(x)$为:$f(x)=f(x)-f_i(x)x^{i-ld}$,$g(x)=g(x)+f_i(x)x^{i-ld}$,其中$ld$是最低位的非零项指数。 5. 如果$i$等于序列长度$n$,则停止,否则将$i$增加1,返回步骤3。 当算法执行结束后,如果$deg(f(x))<n$,则序列是线性递推序列。否则,序列不是线性递推序列。 Berlekamp-Massey算法具有高效的时间复杂度和空间复杂度,并且能够在有限时间内判断序列是否为线性递推序列。由于其可靠性和适用性,该算法在加密、编码、校验等方面得到广泛应用。 ### 回答3: Berlekamp-Massey算法是一种线性复杂度扫描算法,用于寻找给定有限域上的线性递推序列的最短线性递推关系。在密码学、纠错码、伪随机序列等应用中有着广泛的应用。 该算法的基本思想是利用一个长度为m的寄存器序列和一个长度为m的系数序列,去逐步生成原序列,通过比较原序列和生成序列之间的差异,逐步解决递推关系。当序列长度超过m时,就可以使用修改寄存器序列和系数序列来更新序列。在任意时刻,算法都会保持当前序列前r个元素的线性关系,直到找到整个递推式。因此,它可以通过线性时间求解整个递推式。 Berlekamp-Massey算法对于极大伪随机序列具有特别的重要性,因为它可以判断一个序列是否为线性复杂度生成,并且可以通过线性时间求出其线性递推关系。具体来说,一个序列为线性复杂度生成当且仅当它的线性递推关系的位数达到了序列的长度。在密码学中,这意味着一个暴力破解程序所需要的运算次数会达到指数级。因此,一些密码学应用需要使用Berlekamp-Massey算法对生成的伪随机序列进行测试,以保证其没有线性递推关系,从而更好地保证密码的安全性。 总的来说,Berlekamp-Massey算法是一种重要的算法,在密码学和其他应用中都有广泛的应用和重要性。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值