3-VOSviewer图谱相关指标-Links、Total link Strength和Documents详细解释

上上节课我们讲解了如何选择Full counting 或者选择Fractional counting

涉及的是边的权重。
上节课我们讲解Vosviewer中两个指标分别是 Occurrencs、Total link Strength两个指标的含义。
这节课我们继续讲解:Links、Total link Strength和Documents\Occurrencs
原数据如下:

陶阳明;q;p杨惟轶;白辰甲;蔡超;赵英男;刘鹏杨洋;陈维维杨洋;陈维维杨洋;陈维维微信公众号“学术点滴”微信公众号“学术点滴”微信公众号“学术点滴”微信公众号“学术点滴”
Documents做出的图如下所示,图中节点大小表示出现频次高低,并不是共现频次高低。

Links做出的图如下所示,图中节点大小表示二值化后的点度中心性大小,即与该节点连线的节点越多【不包含重复次数】,圆圈越大。

Total link Strength做出的图如下所示,图中节点大小表示与该节点连线多少【包含重复次数】,总的连线越多,圆圈越大。至于Total link Strength怎么计算的参考上次推文。

合理性评估:
Links、Total link Strength和Documents\Occurrencs三种方式那种更好呢?
首先: Total link Strength不太合理,因为该值大小受到与其合作作者数量的影响,比如(杨惟轶;白辰甲;蔡超;赵英男;刘鹏)合作一篇论文,杨惟轶的Total link Strength是4; (杨洋;陈维维)合作三篇论文,杨洋的Total link Strength才是3,显然结果不合理。
其次: Links合理吗? 也不太合理,比如(杨惟轶;白辰甲;蔡超;赵英男;刘鹏)合作一篇论文,杨惟轶的Links是4; (杨洋;陈维维)合作三篇论文,杨洋的Links才是1,显然结果更不合理。
最后只剩下:Documents\Occurrencs了,以出现频次决定圆圈大小。就用这个吧!!!
上述案例通过小数据进行的测试,当数据量大时,形成一个大的网络,哪种指标更合适呢?

在这里插入图片描述在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值