CiteSpace关键词聚类图谱含义详细解析
回顾上一次推文:CiteSpace关键词共现图谱含义详细解析
其中有一句:
当你人工已经可以很容易的进行归纳后,就不需要再利用CiteSpace聚类功能啦。
我们来看一下上次推文做出来的关键词共现图谱:
人工不好归纳!那怎么聚类呢?
此时便可使用CiteSpace的聚类功能啦!
如下所示:我们可以清晰地看到上边的关键词共现网络聚成了一个个不规则区域,每一个区域都对应着一个标签。
顺序是从0到7,数字越小,聚类中包含的关键词越多,每个聚类是多个紧密相关的词组成的,具体是那些关键词我们可以通过导出得报告得到详细信息。
在这个网络中我们需要注意两个数值,一个是Q值一个是S值,这两个数值表征着聚类想过的好坏,一般认为:
Modularity::聚类模块值(Q值),一般认为Q>0.3意味着聚类结构显著
Silhouette:S值:聚类平均轮廓值 ,一般认为S>0.5聚类类就是合理的,S>0.7意味着聚类是令人信服的。
如果这两个值不在此范围内,我们可以调节每年出现的次数或者网络的剪切算法。
但是,我们不能为了调值而调值&#