CiteSpace关键词聚类图谱含义详细解析

CiteSpace关键词聚类图谱含义详细解析
在这里插入图片描述
回顾上一次推文:CiteSpace关键词共现图谱含义详细解析
其中有一句:
当你人工已经可以很容易的进行归纳后,就不需要再利用CiteSpace聚类功能啦。
我们来看一下上次推文做出来的关键词共现图谱:

在这里插入图片描述
人工不好归纳!那怎么聚类呢?
此时便可使用CiteSpace的聚类功能啦!
如下所示:我们可以清晰地看到上边的关键词共现网络聚成了一个个不规则区域,每一个区域都对应着一个标签。

顺序是从0到7,数字越小,聚类中包含的关键词越多,每个聚类是多个紧密相关的词组成的,具体是那些关键词我们可以通过导出得报告得到详细信息。
在这个网络中我们需要注意两个数值,一个是Q值一个是S值,这两个数值表征着聚类想过的好坏,一般认为:
Modularity::聚类模块值(Q值),一般认为Q>0.3意味着聚类结构显著
Silhouette:S值:聚类平均轮廓值 ,一般认为S>0.5聚类类就是合理的,S>0.7意味着聚类是令人信服的。
如果这两个值不在此范围内,我们可以调节每年出现的次数或者网络的剪切算法。
但是,我们不能为了调值而调值&#

### CiteSpace 聚类分析与图谱制作 #### 安装与准备 为了确保顺利进行聚类分析,在开始之前需确认已按照相关指南完成CiteSpace软件的安装[^2]。 #### 创建数据集 在启动CiteSpace之后,通过导入特定格式的数据文件(如Web of Science导出记录),为后续分析奠定基础。这一步骤至关重要,因为高质量的数据输入直接影响到最终生成图表的质量和准确性[^3]。 #### 关键词共现图构建 基于导入的数据源,执行关键词提取过程来识别文档集合内的核心概念及其频率分布情况。此阶段形成的可视化图形有助于直观理解各术语之间的联系强度以及整体结构特征[^1]。 #### 执行聚类操作 - **选择合适的参数配置**:依据具体需求设定时间范围、节点类型等选项; - **应用K-means或LLR算法**:这两种方法均可用于实现有效的分组效果;对于某些场景下可能出现的标签截断问题,则可通过调整设置项下的最大长度限制加以改善[^4]。 ```plaintext // 进行时区聚类的具体步骤如下: 点击工具栏上的 'Cluster' 按钮 -> 选取所需数量(例如6)作为目标簇数目 -> 确认后等待计算完成 ``` #### 解读结果 一旦获得聚类后的视图,便可以通过观察不同颜色区域代表的主题类别,评估它们各自的影响力和发展趋势。此外,还可以进一步探索各个子群内部成员间的交互模式,从而揭示潜在的知识脉络与发展路径。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值