Paper翻译:《Identification of Apple Tree Leaf Diseases Based on Deep Learning Models》

本文提出了一种名为XDNet的新型深度卷积神经网络,用于苹果树叶病害(ATLDs)的识别。XDNet结合了Xception的深度可分离卷积和DenseNet的密集连接结构,通过数据增强和迁移学习技术提高模型性能。实验表明,XDNet在识别五种常见ATLD和健康叶子时的准确率高达98.82%,优于其他CNN模型,具有更快的收敛速度、较少的参数和较高的鲁棒性。此外,实验证明,实验室和实地拍摄的图像对模型训练至关重要,实际栽培背景的图像能提高模型的泛化能力。
  • 论文名称:《Identification of Apple Tree Leaf Diseases Based on Deep Learning Models》
  • 论文作者:Bi C , J Wang, Duan Y , et al.
  • 发表期刊:Symmetry, 2020, 12(7):1065.
  • 论文总结:
  1. Research Gap:
    DenseNet和Xception的融合模型对苹果叶部病害进行检测
  2. Importance:
    对6类苹果叶片的ACC为98.82%

Abstract

原文 译文
   Early diagnosis and accurate identification of apple tree leaf diseases (ATLDs) can control the spread of infection, to reduce the use of chemical fertilizers and pesticides, improve the yield and quality of apple, and maintain the healthy development of apple cultivars. In order to improve the detection accuracy and efficiency, an early diagnosis method for ATLDs based on deep convolutional neural network (DCNN) is proposed. We first collect the images of apple tree leaves with and without diseases from both laboratories and cultivation fields, and establish dataset containing five common ATLDs and healthy leaves. The DCNN model proposed in this paper for ATLDs recognition combines DenseNet and Xception, using global average pooling instead of fully connected layers. We extract features by the proposed convolutional neural network then use a support vector machine to classify the apple leaf diseases. Including the proposed DCNN, several DCNNs are trained for ATLDs recognition. The proposed network achieves an overall accuracy of 98.82% in identifying the ATLDs, which is higher than Inception-v3, MobileNet, VGG-16, DenseNet-201, Xception, VGG-INCEP. Moreover, the proposed model has the fastest convergence rate, and a relatively small number of parameters and high robustness compared with the mentioned models. This research indicates that the proposed deep learning model provides a better solution for ATLDs control. It could be also integrated into smart apple cultivation systems.    苹果树叶病害(ATLDs)的早期诊断和准确识别可以控制感染的传播,减少化肥和农药的使用,提高苹果的产量和品质,维护苹果品种的健康发展。为了提高检测精度和效率,提出了一种基于深度卷积神经网络(DCNN)的ATLD早期诊断方法。我们首先从实验室和栽培田收集有病害和无病害的苹果树叶图像,并建立包含五种常见 ATLD 和健康叶子的数据集。本文提出的用于ATLDs识别的DCNN模型结合了DenseNet和Xception,使用全局平均池化而不是全连接层。我们通过提出的卷积神经网络提取特征,然后使用支持向量机对苹果叶病进行分类。包括提议的 DCNN,有几个 DCNN 被训练用于 ATLDs 识别。所提出的网络在识别 ATLD 方面的总体准确率为 98.82%,高于 Inception-v3、MobileNet、VGG-16、DenseNet-201、Xception、VGG-INCEP。此外,与上述模型相比,所提出的模型具有最快的收敛速度、相对较少的参数和较高的鲁棒性。这项研究表明,所提出的深度学习模型为 ATLD 控制提供了更好的解决方案。它还可以集成到智能苹果种植系统中。
Keywords: apple tree leaf diseases; deep convolutional neural network; transfer learning; model fusion 关键词:苹果树叶病害; 深度卷积神经网络; 迁移学习; 模型融合

1.Introduction

原文 译文
   Mosaic, Rust, Grey spot, Brown spot, and Alternaria leaf spot are five common apple tree leaf diseases. Early diagnosis and accurate identification of apple tree leaf diseases (ATLDs) can effectively control the spread of infection, reduce losses, and ensure the apple industry’s healthy growth. Traditional plant leaf disease recognition methods mainly rely on expert experiences to manually extract the color, texture, and shape features of disease leaf images [1–3]. Due to the complexity and diversity of the captured backgrounds and the disease spots [4], artificially extracted features using image analysis methods are usually limited to specific dataset, when transferred to new dataset, the identification accuracy is not ideal. Furthermore, most of the existing apple disease dataset include images with pure background, dataset with natural cultivation background need to collect to meet the needs of apple disease identification in the environment of natural field.    花叶病、锈病、灰斑病、褐斑病和链格孢属叶斑病是五种常见的苹果树叶病害。 苹果树叶病害(ATLDs)的早期诊断和准确识别可以有效控制感染的传播,减少损失,确保苹果产业的健康发展。 传统的植物叶片病害识别方法主要依靠专家经验手动提取病叶图像的颜色、纹理和形状特征[1-3]。 由于捕获的背景和病斑的复杂性和多样性[4],使用图像分析方法人工提取的特征通常仅限于特定数据集,当转移到新数据集时,识别精度并不理想。 此外,现有的苹果病害数据集大多包含纯背景图像,需要采集自然栽培背景的数据集以满足自然田间环境下苹果病害识别的需要。
   Deep convolutional neural networks (DCNNs) have good performances in processing twodimensional data, especially in image and video classification tasks [5]. Lee et al. proposed a convolutional neural network (CNN) system that used plant leaves to automatically identify plants [6]. In 2015, Kawasaki et al. studied the recognition of cucumber foliar diseases based on CNNs, which classified two common cucumber leaf diseases and healthy leaves with an average accuracy of 94.9% [7]. The results showed that the classification features extracted by the CNN-based network model could obtain the best classification performance. In 2016, Sladojevic et al. used deep neural networks to identify 13 common plant diseases. Results showed that their model had an average recognition accuracy of 96.3% [8]. Mohanty et al. used AlexNet and GoogLeNet networks with transfer learning methods to identify 26 diseases of 14 crops in the PlantVillage dataset, and the accuracy on a given test dataset was 99.35% [9]. Ferentinos et al. used a CNN model to identify plant diseases in 2018, from a public dataset with 87,848 images and 58 diseases of 25 species. Their results showed that the highest accuracy could reach 99.53%, and the model could be used as a tool for early warning of plant diseases [10]. Long et al. used AlexNet and GoogLeNet to conduct experiments which compared the learning performance of scratch learning methods and transfer learning methods. They fine-tuned the DCNNs to identify four leaf diseases and healthy leaves of Camellia oleifera. The experimental results showed that the accuracy of DCNN was 96.53%, and transfer learning could accelerate network convergence and improve classification performance [11].    深度卷积神经网络 (DCNN) 在处理二维数据方面具有良好的性能,尤其是在图像和视频分类任务中 [5]。李等人提出了一种使用植物叶子自动识别植物的卷积神经网络 (CNN) 系统 [6]。 2015 年,川崎等人研究了基于CNNs对黄瓜叶病的识别,将黄瓜常见的叶病和健康叶分为两种,平均准确率为94.9%[7]。结果表明,基于CNN的网络模型提取的分类特征可以获得最佳的分类性能。 2016 年,Sladojevic 等人使用深度神经网络识别 13 种常见植物病害。结果表明,他们的模型的平均识别准确率为 96.3% [8]。莫汉蒂等人使用 AlexNet 和 GoogLeNet 网络和迁移学习方法识别 PlantVillage 数据集中 14 种作物的 26 种病害,在给定测试数据集上的准确率为 99.35% [9]。费伦蒂诺斯等人使用 CNN 模型识别 2018 年的植物病害,从包含 87,848 张图像和 25 个物种的 58 种病害的公共数据集中。他们的结果表明,最高准确率可以达到 99.53%,该模型可以作为植物病害预警的工具[10]。龙等人使用 AlexNet 和 GoogLeNet 进行实验,比较了从头学习方法和迁移学习方法的学习性能。他们对 DCNN 进行了微调,以识别油茶的四种叶子病害和健康叶子。实验结果表明,DCNN的准确率为96.53%,迁移学习可以加速网络收敛,提高分类性能[11]。
   In 2017, Zhang et al. proposed an ATLDs recognition method based on image processing technology and pattern recognition for three types of ATLDs and healthy leaves [12]. Their dataset included 90 images of healthy apple leaves and leaves with white powder, Mosaic, and Rust diseases. The disease identification accuracy of their method was higher than 90%. In 2017, Liu et al. designed a DCNN based on AlexNet for the identification of four ATLDs. The accuracy reached 97.62% on the dataset containing Mosaic, Rust, Brown spot, and Alternaria leaf spot [13]. In 2019, Baranwal. et al. designed a CNN based on LeNet-5 for the identification of three types of ATLDs and healthy leaves. On the dataset with mostly laboratory background containing Black Rot, Rust, Apple Scab, and healthy leaves, the accuracy reached 98.54% [14]. In 2019, Jiang et al. proposed a CNN model named VGG-INCEP for ATLDs including Mosaic, Rust, Grey spot, Brown spot, and Alternaria leaf spot, which achieves the accuracy of 97.14%, and created a real-time fast disease detection model achieving 78.80% mean average accuracy [15]. In 2020, Yong Zhong et al. proposed three loss functions based on the DenseNet-121 deep convolutional network. On the dataset of general Apple Scab, serious Apple Scab, Grey spot, general Rust, serious Rust, and healthy leaves, the accuracy rates are 93.51%, 93.31% and 93.71% for the three loss functions, which are better than the accuracy of cross-entropy loss function [16]. In 2020, Yu et al. proposed a DCNN based on the region of interest to identify ATLDs. A total of 404 images containing Brown spot, Alternaria leaf spot and healthy leaves were identified. On the dataset, the recognition accuracy rate of 84.3% was achieved [17]. In 2020, Albayati et al. proposed a DCNN that combined speeded up robust feature extraction and grasshopper optimization algorithm feature for the identification of three ATLDs and healthy leaves. On the dataset of Black Rot, Rust, Apple Scab, and healthy leaves, the accuracy reached 98.28% [18].    2017 年,张等人提出了一种基于图像处理技术和模式识别的ATLDs识别方法,用于三种类型的ATLDs和健康叶片[12]。他们的数据集包括 90 张健康的苹果叶子和带有白色粉末、马赛克和锈病的叶子的图像。他们的方法的疾病识别准确率高于90%。 2017 年,刘等人设计了一个基于 AlexNet 的 DCNN,用于识别四个 ATLD。在包含 Mosaic、Rust、Brown spot 和 Alternaria 叶斑病的数据集上,准确率达到了 97.62% [13]。 2019 年,巴兰瓦尔。等。设计了一个基于 LeNet-5 的 CNN,用于识别三种类型的 ATLD 和健康叶子。在以实验室背景为主的包含黑腐病、锈病、苹果黑星病和健康叶子的数据集上,准确率达到了 98.54% [14]。 2019 年,Jiang 等人提出了一个名为 VGG-INCEP 的 CNN 模型,用于包括 Mosaic、Rust、Grey spot、Brown spot 和 Alternaria 叶斑在内的 ATLD,其准确率达到 97.14%,并创建了一个实时快速疾病检测模型,平均准确率达到 78.80% [15]。 2020年,永忠等人提出了三个基于 DenseNet-121 深度卷积网络的损失函数。在一般苹果黑星病、严重苹果黑星病、灰斑病、一般锈病、严重锈病和健康叶片的数据集上,三种损失函数的准确率分别为93.51%、93.31%和93.71%,优于交叉熵损失函数[16]。 2020 年,Yu 等人提出了一种基于感兴趣区域的 DCNN 来识别 ATLD。共识别出 404 张包含褐斑病、链格孢属叶斑病和健康叶片的图像。在数据集上,识别准确率达到了 84.3% [17]。 2020 年,Albayati 等人提出了一种结合加速鲁棒特征提取和蚱蜢优化算法特征的 DCNN,用于识别三个 ATLD 和健康叶子。在黑腐病、锈病、苹果黑星病和健康叶子的数据集上,准确率达到了 98.28% [18]。
   In summary, the DCNN has achieved satisfactory results in cropped disease recognition area. However, the number of ATLD types that can be identified in the existing research is limited, and the accuracy under the real usage scenario needs to be improved.    综上所述,DCNN 在作物病害识别领域取得了令人满意的结果。 但现有研究中可识别的ATLD类型数量有限,实际使用场景下的准确性有待提高。
   Aiming at the above problems, this study proposes a DCNN model named Xception Dense Net (XDNet) combining depthwise separable convolution [19] and densely connected structures [20], which applies transfer learning and uses the global average pooling layer instead of the fully connected layer. This paper use XDNet to extract apple leaf disease features, and use a support vector machine (SVM) to classify the diseases. Comparing the classification and recognition performance with other CNNs, the experimental results show that the identification accuracy of the proposed XDNet model is 98.82% on the testing dataset, which is higher than other mentioned CNNs with the same methods of transfer learning and data preprocessing. Moreover, using image augmentation technology and transfer learning increase the accuracy by 7.59%.    针对上述问题,本研究提出了一种名为 Xception Dense Net (XDNet) 的 DCNN 模型,该模型结合了深度可分离卷积 [19] 和密集连接结构 [20],该模型应用迁移学习并使用全局平均池化层代替全连接层。 本文使用XDNet提取苹果叶片病害特征,并使用支持向量机(SVM)对病害进行分类。 将分类识别性能与其他CNNs进行比较,实验结果表明,所提出的XDNet模型在测试数据集上的识别准确率为98.82%,高于采用相同迁移学习和数据预处理方法的其他CNNs。 此外,使用图像增强技术和迁移学习将准确率提高了 7.59%。
   The main contributions of this article are summarized as follows:
   Firstly, in order to improve the robustness of the model and reduce over-fitting, we collect apple tree diseased leaf images in laboratory and field conditions, in different seasons, at different times of the day, and with different exposure conditions. Besides, we use augmentation techniques of rotation, mirroring, Gaussian noise, salt and pepper noise, adjusting the brightness, sharpness, contrast of images [21], which have enlarged the dataset. The established dataset can well simulate the real shooting environment, image acquisition noise, light changes and transformation changes.
  Secondly, inspired by the depthwise separable convolution structure with residual connections used by Xception [19] and the feature reuse characteristic in the dense block of DenseNet [20], this paper proposes a DCNN model to identify ATLDs, which is a combination of depthwise separable convolution and densely connected structure. The depthwise separable convolution structure reduces network parameters, improves training speed, while dense blocks integrate shallow features into deep features better and achieve better feature reuse.
  The rest of the work is arranged as follows: Section 2 introduces the collection, division, and preprocessing of ATLDs dataset. Section 3 introduces the basic structure of Xception and DenseNet, and focuses on the proposed XDNet, which is a deep convolutional network model for ATLDs. Section 4 describes the workflow of the ATLDs recognition system and the proposed network performance evaluated through experiments. Finally, Section 5 summarizes the work.
   本文的主要贡献总结如下:
  首先,为了提高模型的鲁棒性并减少过拟合,我们在实验室和野外条件下、不同季节、一天中的不同时间和不同的暴露条件下收集苹果树病叶图像。此外,我们使用旋转、镜像、高斯噪声、椒盐噪声等增强技术,调整图像的亮度、锐度、对比度 [21],从而扩大了数据集。建立的数据集可以很好地模拟真实拍摄环境、图像采集噪声、光线变化和变换变化。
  其次,受 Xception [19] 使用的具有残差连接的深度可分离卷积结构和 DenseNet [20] 的密集块中的特征重用特性的启发,本文提出了一种 DCNN 模型来识别 ATLD,它是深度可分离的组合卷积和密集连接结构。深度可分离的卷积结构减少了网络参数,提高了训练速度,而密集块更好地将浅层特征融入深层特征,实现更好的特征复用。
  其余工作安排如下:第
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值