计算机视觉:让计算机“看懂”和视频
这是什么场景?
画面里都有什么?
人、车和房子在什么位置?
目标在做什么?
目标间有什么关系?
视觉是自然智能不可思议的结晶
猕猴的大脑皮层中视觉部分占据大约50%
人脑中有关视觉的部分所占比重大
人类大脑对视觉进行层次化的处理
人类采用神经网络对视觉信息进行深层次处理,和深度学习密切结合。
计算机视觉发展史
起源:20世纪50年代统计模式识别,二维图像分析
诞生:1974 Minsky -> David Marr 暑期,1981人工智能“计算机视觉”专辑,Marr视觉计算理论得到了迅速发展
发展:80年代以后,
(1)随着计算能力的迅速增长,视觉计算成本极大降低
(2)以Marr理论为基础的视觉理论广泛研究
视觉技术得到迅速发展,并在视频监控、工业分析等领域得到广泛应用。
计算机视觉/深度学习发展史
2000年后,特征提取和基于学习的视觉得到迅速发展
2006年,Hinton提出深度学习
2010年,微软使用深度学习在语音方面取得突破进展
2015年后,深度学习在视觉各应用领域取得突破:
2015年,在ImageNet上的识别准确率首次超越人类
2016年,Tesla创造了56亿公里的自动驾驶路测数据
2017年,IPhone X宣布引用Face ID高精度人脸识别技术
2018年,OpenAI 2:1战胜人类DOTA2高手队
计算机视觉无处不在
服务机器人、安防监控、自动驾驶、智能穿戴、无人机快递