奇异值分解

奇异值分解

奇异值分解是一种应用广泛的矩阵分解方式,对矩阵 A ∈ R m × n \mathbf{A} \in R^{m \times n} ARm×n,其奇异值分解的形式为
A = U Σ V T \mathbf{A}=\mathbf{U \Sigma V}^T A=UΣVT
其中 U \mathbf{U} U m × m m \times m m×m正交矩阵, V \mathbf{V} V n × n n \times n n×n正交矩阵, Σ \mathbf{\Sigma} Σ m × n m \times n m×n矩阵,非零元素为 σ 1 , ⋯   , σ r \sigma_1,\cdots,\sigma_r σ1,,σr,被称作 A \mathbf{A} A的奇异值,排列在 A \mathbf{A} A的主对角线上。

首先看如何求出 U \mathbf{U} U,考虑 A A T \mathbf{AA}^T AAT,有
A A T = U Σ V T V Σ T U T = U Σ Σ T U T \begin{aligned} \mathbf{AA}^T&=\mathbf{U \Sigma V}^T \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \\ &=\mathbf{U \Sigma \Sigma}^T\mathbf{U}^T \end{aligned} AAT=UΣVTVΣTUT=UΣΣTUT
也就是说 U \mathbf{U} U A A T \mathbf{AA}^T AAT的特征向量, σ i 2 \sigma_i^2 σi2 A A T \mathbf{AA}^T AAT的特征值,因此 A A T u i = σ i 2 u i \mathbf{A}\mathbf{A}^T\mathbf{u}_i=\sigma_i^2\mathbf{u}_i AATui=σi2ui,单独考虑 A A T \mathbf{AA}^T AAT的特征向量,满足
A ( A T x ) = λ x \mathbf{A}(\mathbf{A}^T\mathbf{x})=\lambda\mathbf{x} A(ATx)=λx
显然有 r r r个特征向量来自 A T \mathbf{A}^T AT的零空间,剩余 m − r m-r mr个来自 A \mathbf{A} A的列空间。接下来考虑 A T A \mathbf{A}^T\mathbf{A} ATA
A T A = V Σ T U T U Σ V T = V Σ T Σ V T \begin{aligned} \mathbf{A}^T\mathbf{A}&=\mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U \Sigma V}^T \\ &=\mathbf{V \Sigma}^T \mathbf{\Sigma V}^T \end{aligned} ATA=VΣTUTUΣVT=VΣTΣVT
也就是说 V \mathbf{V} V A T A \mathbf{A}^T\mathbf{A} ATA的特征向量, σ i 2 \sigma_i^2 σi2也是 A T A \mathbf{A}^T\mathbf{A} ATA的特征值,因此 A T A v i = σ i 2 v i \mathbf{A}^T\mathbf{A}\mathbf{v}_i=\sigma_i^2\mathbf{v}_i ATAvi=σi2vi,单独考虑 A T A \mathbf{A}^T\mathbf{A} ATA的特征向量
A T ( A x ) = λ x \mathbf{A}^T(\mathbf{Ax})=\lambda\mathbf{x} AT(Ax)=λx
显然有 r r r个特征向量来自 A \mathbf{A} A的零空间,剩余 n − r n-r nr个来自 A \mathbf{A} A的行空间

最后考虑在 A T A v i = σ i 2 v i \mathbf{A}^T\mathbf{A}\mathbf{v}_i=\sigma_i^2\mathbf{v}_i ATAvi=σi2vi两边同时左乘 v i T \mathbf{v}_i^T viT
A T A v i = σ i 2 v i v i T A T A v i = σ i 2 v i T v i ∣ A v i ∣ 2 = σ i 2 \begin{aligned} \mathbf{A}^T\mathbf{A}\mathbf{v}_i&=\sigma_i^2\mathbf{v}_i\\ \mathbf{v}_i^T\mathbf{A}^T\mathbf{A}\mathbf{v}_i&=\sigma_i^2\mathbf{v}_i^T\mathbf{v}_i\\ | \mathbf{Av}_i|^2&=\sigma_i^2 \end{aligned} ATAviviTATAviAvi2=σi2vi=σi2viTvi=σi2
这说明奇异值是 A v i \mathbf{Av}_i Avi的长度

综上所述 U \mathbf{U} U V \mathbf{V} V中的向量分别来自 A \mathbf{A} A的4个基本子空间,其中 U \mathbf{U} U中的向量来自列空间和 A T \mathbf{A}^T AT的零空间(左零空间), V \mathbf{V} V中的向量来自行空间和零空间。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值