左逆矩阵与右逆矩阵

左逆矩阵与右逆矩阵

满足 L A = I LA=I LA=I,但不满足 A L = I AL=I AL=I的矩阵称为矩阵A的左逆矩阵,类似的,满足 A R = I AR=I AR=I,但不满足 R A = I RA=I RA=I的矩阵称为右逆矩阵。

定理1:仅当 m ≥ n m \geq n mn时,矩阵 A ∈ C m × n A \in \mathbb{C}^{m \times n} ACm×n才可能有左逆矩阵。

证明:当 m ≥ n m \geq n mn时,矩阵 A A A可以分块为 A = [ B C ] A= \left[\begin{matrix}B\\C\end{matrix}\right] A=[BC],其中 B ∈ C n × n B \in \mathbb{C}^{n \times n} BCn×n C ∈ C ( m − n ) × n C \in \mathbb{C}^{(m-n) \times n} CC(mn)×n,令 L = [ X , Y ] L=\left[\begin{matrix}X,Y\end{matrix}\right] L=[X,Y]满足 L A = I LA=I LA=I,则 X B + Y C = I XB+YC=I XB+YC=I,因此只要矩阵 X X X Y Y Y满足 X B + Y C = I XB+YC=I XB+YC=I,矩阵 L = [ X , Y ] L=\left[\begin{matrix}X,Y\end{matrix}\right] L=[X,Y]就是 A A A的左逆矩阵,例如若 B B B非奇异,则去 X = B − 1 X=B^{-1} X=B1 Y = O Y=O Y=O即可。

对于 m &lt; n m &lt; n m<n,可将矩阵 A A A分块为 [ B , C ] \left[\begin{matrix}B,C\end{matrix}\right] [B,C],其中 B ∈ C m × m B \in \mathbb{C}^{m \times m} BCm×m C ∈ C m × n − m C \in \mathbb{C}^{m \times {n-m}} CCm×nm L L L分块为 [ X Y ] \left[\begin{matrix}X\\Y\end{matrix}\right] [XY],假定 L L L A A A的左逆矩阵,则
L A = [ X Y ] [ B , C ] = [ X B X C Y B Y C ] = I n × n = [ I m × m O m × ( n − m ) O ( n − m ) × m I ( n − m ) × ( n − m ) ] LA=\left[\begin{matrix}X\\Y\end{matrix}\right]\left[\begin{matrix}B,C\end{matrix}\right]=\left[\begin{matrix}XB&amp;XC\\YB&amp;YC\end{matrix}\right]=I^{n \times n}=\left[\begin{matrix}I_{m \times m}&amp;O_{m \times (n-m)}\\O_{(n-m) \times m}&amp;I_{(n-m) \times (n-m)}\end{matrix}\right] LA=[XY][B,C]=[XBYBXCYC]=In×n=[Im×mO(nm)×mOm×(nm)I(nm)×(nm)]
既有
(1) X B = I m × m XB=I_{m \times m}\tag{1} XB=Im×m(1)
(2) X C = O m × ( n − m ) XC=O_{m \times (n-m)}\tag{2} XC=Om×(nm)(2)
(3) Y B = O ( n − m ) × m YB=O_{(n-m) \times m}\tag{3} YB=O(nm)×m(3)
(4) Y C = I ( n − m ) × ( n − m ) YC=I_{(n-m) \times (n-m)}\tag{4} YC=I(nm)×(nm)(4)
B B B非奇异,则 X = B − 1 X=B^{-1} X=B1,代入式(2)可得 C = O m × ( n − m ) C=O_{m \times (n-m)} C=Om×(nm),则 Y C = O ( n − m ) × ( n − m ) YC=O_{(n-m) \times (n-m)} YC=O(nm)×(nm),与式(4)矛盾,即 L L L A A A的左逆矩阵这一假设矛盾。

定理2:仅当 m ≤ n m \leq n mn时,矩阵 A ∈ C m × n A \in \mathbb{C}^{m \times n} ACm×n才可能有右逆矩阵。

证明与定理1类似。

作为定理1和定理2的特例,矩阵 A ∈ C m × m A \in \mathbb{C}^{m \times m} ACm×m可能既有左逆矩阵又有右逆矩阵,逆矩阵便是既满足左逆矩阵又满足右逆矩阵,且左逆矩阵和右逆矩阵相等的特殊矩阵。

对给定矩阵 A ∈ C m × n A \in \mathbb{C}^{m \times n} ACm×n,当 m &gt; n m&gt;n m>n时, A A A可能有多个左逆矩阵,当 m &lt; n m&lt;n m<n A A A可能有多个右逆矩阵,那么什么情况下左逆矩阵或右逆矩阵唯一呢?如下讨论。

m &gt; n m&gt;n m>n且矩阵 A A A具有满列秩时( R a n k ( A ) = n Rank(A)=n Rank(A)=n),此时 n × n n \times n n×n矩阵 A H A A^HA AHA是可逆的,显然
L = ( A H A ) − 1 A H L=(A^HA)^{-1}A^H L=(AHA)1AH
满足左逆矩阵的定义。这种左逆矩阵是唯一的,常称为左伪逆矩阵。

同理当 m &lt; n m&lt;n m<n且矩阵 A A A具有满行秩时( R a n k ( A ) = m Rank(A)=m Rank(A)=m),此时 m × m m \times m m×m矩阵 A A H AA^H AAH是可逆的,显然
R = A H ( A A H ) − 1 R=A^H(AA^H)^{-1} R=AH(AAH)1
满足右逆矩阵的定义。这种右逆矩阵是唯一的,常称为右伪逆矩阵。

  • 18
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值