给定一个大小为 n 的数组,找出其中所有出现超过 ⌊ n/3 ⌋ 次的元素。
说明: 要求算法的时间复杂度为 O(n),空间复杂度为 O(1)。
示例 1:
输入: [3,2,3]
输出: [3]
示例 2:输入: [1,1,1,3,3,2,2,2]
输出: [1,2]
思路一:
摩尔投票法,采取和求超过1/2的众数的同样的方法。首先考虑众数的个数,由于去的1/3,说明众数最多只会出现两个。所以可以选择两个候选人进行投票。
投票的规则如下:如果当前的数等于两个候选人之中的一个,那么那个候选人的count+1.否则判断两个人的count,如果有一个的为0,就要将那个为0的候选人更改为新的这个数。如果两个count都不为0.就将他们的得票数减一。也就是count-1.最后得到两个候选人,然后遍历统计两个候选人出现的个数,大于1/3者就是最后的结果。时间复杂度为0(n)。
答题思路就是这样。
java代码实现:
public List<Integer> majorityElement1(int[] nums) {
int count1 = 1;
int c1 = nums[0];
int c2 = 0;
int count2 = 0;
int i = 1;
for(;i<nums.length;i++){
if(c1==nums[i]){
count1++;
}else {
count2=1;
c2 = nums[i];
break;
}
}
for(int j = i+1;j<nums.length;j++){
if(nums[j]==c1){
count1++;
}else if(nums[j]==c2){
count2++;
}else{
if(count1==0){
count1 = 1;
c1 = nums[j];
}else if(count2==0){
count2=1;
c2 = nums[j];
}else{
count1--;
count2--;
}
}
}
List<Integer> list = new ArrayList<>();
count1=0;count2=0;
for(int t:nums){
if(t==c1){
count1++;
}if(t==c2)count2++;
}
if(count1>nums.length/3)list.add(c1);
if(count2>nums.length/3)list.add(c2);
return list;
}
时间复杂度o(n)
空间复杂度o(n)