希尔伯特变换产生负频率解决方法


通过直接正交NHT方法,可以成功地去除负IF值。

0 英文缩写对照

我专业不是信号处理,而且对于那些一大段都是各种英文缩写的文章很头疼,也很讨厌。对于本文中大部分的英文缩写,我会在本节中列出英文全称及其中文释义,但是我对于大多数概念并不是很了解。序号前后无规律,如下:

1、IF,instantaneous frequency,瞬时频率

2、AS,analysis signal,分析信号

3、IMF,Intrinsic Mode Function,本征模函数(又称为固有模态函数)

4、EMD,Empirical Mode Decomposition,经验模态分解

5、NHT,normalization hilbert transform,归一化希尔伯特变换

6、STFT,short-time fourier transform,短时傅里叶变换


1 频率

频率是研究任何一种振荡运动的必要的数值,频率f的最基本定义就是周期T的倒数,f=1/T,表示单位时间内完成周期性变化的次数。频率仅在【存在周期波动】时才有意义,并且频率在这段时间上是恒定的,没有更精细的时间分辨率。

在实际的数据分析中,数据由一串实数组成,这些实数在连续的过零点之间可能具有多极值或者没有过零点,然后在任何给定时间还可以存在许多共存的频率值。传统上定义频率的唯一方法是通过傅里叶变换进行计算:
在这里插入图片描述
其中,f(t)为时间t的周期函数,i为虚数单位,角频率ω=2πf,f为频率。如果ω值保持不变,t值变化,对给定t值,eiωt=cos(ωt)+i·sin(ωt)是复平面单位圆上的一点,随着t值的变化,eiωt代表了角频率为ω的圆周运动,ωt每变化2π,就转过一个完整的圆周。

直观理解傅立叶变换就是:用除法求f(t)中有多少频率为ω的圆周运动,然后把它们加起来,得到f(t)中所有频率的分布函数在经典的傅里叶分析中,频率值在积分范围涵盖的整个时间跨度内保持不变。由于傅里叶频率的定义不是时间的函数,因此【只有当数据表示线性与平稳过程时,频率才具有物理意义】。

然而怎么知道各个时间点的频率呢?

于是引入短时傅立叶变换STFT,将数据分解为短子过程,假设频率在每个子过程的整个时间跨度ΔT内是恒定的,但是频率值仍然可以全局变化。频率分辨率Δω受到不确定性原理(由海森堡提出)的限制,可证明频率分辨率Δω与定义频率值的时间跨度ΔT的乘积不小于1/2,即:

Δω·ΔT≥1/2

补充知识——信号的不确定性原理

信号的不确定性原理,也就是量子力学里的海森堡测不准原理。它指出:信号的时宽和频宽不可能同时任意地窄,因此不可能通过任何方法上的改进同时得到完全精确的信号时间、频率信息

1、当使用短时窗进行傅里叶变换,信号的时间信息变得精确,同时频率信息变得不精确;

2、当使用长时窗进行傅里叶变换,信号的频率信息变得精确,同时时间信息变得不精确。因为所得到的频率信息是分布在整个时窗中的。


2 瞬时频率与希尔伯特变换

2.1 瞬时频率

在讨论计算瞬时频率IF的方法之前,必须说明频率的瞬时值的意义。毕竟,传统的频率分析方法主要基于傅立叶变换,它给出了时间不变的幅度和频率值,与傅立叶变换相关的不确定性原理使得瞬时频率的概念变得不可能。

因为不确定性原则是傅立叶变换(或任何其他类型的积分变换)的结果,其中时间将存在于积分间隔上。因此,如果避免频率计算中的积分变换,就不会受到不确定性原理的限制。而傅里叶分析只是时频变换的数学方法之一,现在必须寻找其他解决方案。

实际上,【频率作为时间函数的需要】、【频率应该是时间函数】以及【频率具有瞬时值】的事实可以从数学和物理两方面得到证明

1、在数学上:经典波动理论中普遍接受的频率定义是基于相位函数的。首先说明两个符号:时间t和空间变量x,然后假设波面由随时间变化的幅度a(x,t)和相位θ(x,t)组成的"缓慢"变化函数表示,使得波形s(x,t)为复值函数的实部,有:
在这里插入图片描述
频率ω和波数k定义为:
在这里插入图片描述
由以上两个公式可得波动守恒方程:
在这里插入图片描述
这是控制所有波动的基本定律之一,经典波动理论的假设是非常普遍的:存在一个“缓慢”变化的函数s(x,t),该函数必须是时间t和空间变量x的可微函数。因此,对任何波动,除了具有恒定频率正弦运动的简单波动之外,频率表示应该具有瞬时值。现在迫切的问题是如何定义给定的波数据集的相位函数和瞬时频率

2、在物理上:需要瞬时频率IF表示来自非平稳和非线性过程的数据的基础机制,非平稳性是其关键特征之一,IF的概念对于非线性过程的物理意义解释也是必不可少的:对于非平稳过程,频率应该不断变化,需要数据的时频表示,即频率值必须是时间的函数;对于非线性过程,作为时间函数的频率变化甚至更加剧烈

非线性系统的物理本质是一个具有可变波内调制频率的振荡器,即使在一个单一周期内也可以在不同的时间内采用不同的频率值。为了描述这样的运动,应该使用IF来表示非线性振荡器的这种基本物理特性。对于任何非线性系统,频率肯定不仅在不同的振荡周期之间调制,而且在一个周期内也是如此。为了理解这些过程的潜在机制,不能依赖于具有恒定频率分量的传统傅立叶分析,必须通过基于非傅立叶的方法的瞬时频率来检查真实的物理过程

从数学和物理两个方面的证明至此已结束。

关于瞬时频率IF令人困惑的问题之一源于错误观念:即对于每个IF值,信号的傅立叶频谱中必须存在相应的频率。事实上,正确定义的信号的IF与傅立叶频谱中的频率相比应该具有非常不同的含义。显然,复杂的信号可以在任何给定时间由许多不同的频率组成,例如交响乐团中各种乐器演奏的音乐。

关于IF有两项重大进展:

1、第一个是通过引入经验模式分解EMD方法和Huang等人引入的非线性和非平稳过程数据的本征模函数IMF。

2、第二个是通过Olhede和Walden为线性非平稳过程数据引入的基于小波的分解。

EMD方法或小波分解的引入解决了从多组分信号计算有意义的IF的一个关键障碍,解决方法为将其减少为单组分函数的集合

2.2 希尔伯特变换

希尔伯特变换使用实数据生成唯一的分析信号(AS,analysis signal)。对实信号x(t),其希尔伯特变换(HT,hilbert transform)定义为:
在这里插入图片描述
上式中的P表示复数积分的Cauchy主值(指实数线上的某类瑕积分,这里暂时不要纠结)。HT的结果提供了实值数据分析信号AS的虚部y(t)。下面给出唯一的分析信号z(t):
在这里插入图片描述
其中:
在这里插入图片描述
因此原始数据x(t)为分析信号z(t)的实部,即:
在这里插入图片描述
瞬时频率可定义为相位函数θ(t)的导数:
在这里插入图片描述
下图是一个例子:其中,实部为原始数据x(t),虚部为x(t)的希尔伯特变换y(t),分析信号为z(t),而复平面向量应该是z(t)在虚轴上的投影。
在这里插入图片描述
通常随机信号的相位θ是关于时间的函数θ(t),因此瞬时频率也是关于时间的函数。下面通过使用简单函数的例子来说明,对于:

x(t)=α+cos(αt)

其中α是任意常数,x(t)的希尔伯特变换是:

y(t)=sin(αt)

利用HT给出的公式计算得到x(t)的瞬时频率是:
在这里插入图片描述
上式可给出IF的任何值,具体取决于α的值。【瞬时频率也是关于时间的函数】得证。

分析信号方法还需要满足其他更微妙和严格的条件来产生有意义的IF,见下面的【2.3 Bedrosian原理】一节与【2.4 Nuttall定理】一节。

2.3 Bedrosian原理

Bedrosian定理:从HT得到的分析信号AS计算的瞬时频率有物理意义的必要条件是包络AM和载波FM的傅立叶谱不重叠,即:

H{α(t)cosθ(t)}=a(t)H{cos[θ(t)]}

这要求数据不仅必须是单一成分,还必须是窄带信号,否则AM将污染FM部分。

由于幅度和载波的频谱没有明确分开,EMD生成的IMF不能自动满足此要求,因此IF将受AM变化的影响。因此,Huang等人使用的HT的应用仍然受到偶然的负频率值的困扰

2.4 Nuttall定理

在这里插入图片描述
Nuttall定理也是从分析信号AS产生精确瞬时频率IF的必要条件。

如果一个信号只包含了一种频率的交流成份或者有限几种频率的交流成份,就称这种信号为频带信号,也称为带通信号。而带通信号是线性和窄带信号,因此自动满足Bedrosian和Nuttall设定的限制,但带通信号从数据中消除了许多非线性特性,带通滤波方法无法使HT生成的AS成为计算物理有意义的IF的通用工具。


3 经验AM-FM分解

Bedrosian和Nuttall定理所述的两个局限都具有坚实的理论基础,必须得到满足。下面提出了一种新的归一化方案,它是一种经验的AM和FM分解方法,能够将任何IMF凭经验唯一地分离成包络AM和载波FM部分。这种归一化分解方案有三个重要的结果:

(1)归一化载波使得能够直接计算正交信号;

(2)归一化载波具有单位幅度,自动满足Bedrosian原理;

(3)归一化载波能够提供比Nuttall定理给出的更清晰的基于局部能量的误差测量。

用经验AM-FM分解和归一化方案的方法被命名为归一化希尔伯特变换(NHT)。

基于【3.1 直接正交】和【3.2 归一化希尔伯特变换】的IF计算,每种方法从相同的数据给出稍微不同的IF值。要使所有这些方法起作用,必须首先将数据简化为IMF
在这里插入图片描述

3.1 直接正交

采用经验AM-FM分解得到FM部分:F(t)=cos[φ(t)],直接求其正交信号sin[φ(t)]=±√(1-F(t)2)。

3.2 归一化希尔伯特变换

采用经验AM-FM分解得到FM部分:F(t)=cos[φ(t)],之后再进行希尔伯特变换得到正交信号后构建分析信号AS。


4 总结

瞬时频率与基于傅立叶的方法得到的数据的频率内容有着非常【不同的概念】。

重点】:基于自适应分解单组分函数的直接正交或分析信号到希尔伯特变换的相位函数是【瞬时变化】,而传统的傅立叶型频率内容是基于先验基础的数据的积分变换的【平均频率】。当基础改变时,频率内容也将改变。当改变分解方法时,IF也会改变。【IF和积分变换计算的平均频率不具有相同的物理意义,并且不具有精确的一对一对应关系】。

【关于IF有一个误解:来自分析信号的负IF值】。根据Gabor的方法,通过两个傅里叶变换计算AS:首先将数据转换为频率空间,然后在丢弃所有负频率部分后使用逆傅立叶变换。因此,由于所有负频率内容都已被丢弃,如何仍然存在负IF值?——这完全是对基于AS计算的负IF的性质的误解。

AS中负频率的直接原因是两个过零点之间的多极值的结果】,这将导致复杂相位平面中的局部环路不以坐标系原点为中心。负频率即使没有多极值但是具有大振幅波动也会发生,这也可能使AS相位环失去原点,这是违反上述Bedrosian定理的结果。通过直接正交和NHT方法,可以成功地去除负IF值。


6 参考文献

瞬时频率综述


END

  • 5
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值