4.6 TF常用功能模块

4.6 TF常用功能模块

学习目标

  • 目标
    • 掌握Checkpoint使用
    • 掌握TensorBoard使用
    • 掌握data模块使用
    • 掌握ImageDataGenerator的使用
  • 应用

4.6.1 fit的callbacks详解

回调是在训练过程的给定阶段应用的一组函数。可以使用回调来获取培训期间内部状态和模型统计信息的视图。您可以将回调列表(作为关键字参数callbacks)传递给或类的fit()方法。然后将在训练的每个阶段调用回调的相关方法。

  • 定制化保存模型
  • 保存events文件

4.6.1.1 ModelCheckpoint

from tensorflow.python.keras.callbacks import ModelCheckpoint

  • keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', save_best_only=False, save_weights_only=False, mode='auto', period=1)
    • Save the model after every epoch:每隔多少次迭代保存模型
    • filepath: 保存模型字符串
      • 如果设置 weights.{epoch:02d}-{val_loss:.2f}.hdf5格式,将会每隔epoch number数量并且将验证集的损失保存在该位置
      • 如果设置weights.{epoch:02d}-{val_acc:.2f}.hdf5,将会按照val_acc的值进行保存模型
    • monitor: quantity to monitor.设置为'val_acc'或者'val_loss'
    • save_best_only: if save_best_only=True, 只保留比上次模型更好的结果
    • save_weights_only: if True, 只保存去那种(model.save_weights(filepath)), else the full model is saved (model.save(filepath)).
    • mode: one of {auto, min, max}. 如果save_best_only=True, 对于val_acc, 要设置max, 对于val_loss要设置min
    • period: 迭代保存checkpoints的间隔
check = ModelCheckpoint('./ckpt/singlenn_{epoch:02d}-{val_acc:.2f}.h5',
                                monitor='val_acc',
                                save_best_only=True,
                                save_weights_only=True,
                                mode='auto',
                                period=1)

SingleNN.model.fit(self.train, self.train_label, epochs=5, callbacks=[check], validation_data=(x, y))

注意:

1、使用ModelCheckpoint一定要在fit当中指定验证集才能使用,否则报错误。

2、其中val_acc还是val_accuracy需要在这里指定

model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.sparse_categorical_crossentropy,
              metrics=['accuracy'])

model.compile(optimizer=tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.sparse_categorical_crossentropy,
              metrics=['acc'])

4.6.1.2 Tensorboard

  • 添加Tensorboard观察损失等情况
  • keras.callbacks.TensorBoard(log_dir='./logs', histogram_freq=0, batch_size=32, write_graph=True, write_grads=False, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None, embeddings_data=None, update_freq='epoch')
    • log_dir:保存事件文件目录
    • write_graph=True:是否显示图结构
    • write_images=False:是否显示图片
    • write_grads=True:是否显示梯度histogram_freq 必须大于0
# 添加tensoboard观察
 tensorboard = keras.callbacks.TensorBoard(log_dir='./graph', histogram_freq=1,
                                                  write_graph=True, write_images=True)

SingleNN.model.fit(self.train, self.train_label, epochs=5, callbacks=[tensorboard])
  • 打开终端查看:
# 指定存在文件的目录,打开下面命令
tensorboard --logdir="./"

这是CNN mnist100案例中的效果:

  • 目的:猫狗图片二分类任务为示例
  • 步骤:
    • 1、数据集的获取和构建
    • 2、模型构建和封装
    • 3、训练以及测试过程实现

1、数据集的获取和构建

class CatOrDog(object):
    """猫狗分类
    """
    num_epochs = 1
    batch_size = 32
    learning_rate = 0.001
        # 训练目录
    train_cats_dir = '/root/cv_project/tf_example/cats_vs_dogs/train/cats/'
    train_dogs_dir = '/root/cv_project/tf_example/cats_vs_dogs/train/dogs/'
    # 验证目录
    test_cats_dir = '/root/cv_project/tf_example/cats_vs_dogs/valid/cats/'
    test_dogs_dir = '/root/cv_project/tf_example/cats_vs_dogs/valid/dogs/'

    def __init__(self):
        # 1、读取训练集的猫狗文件
        self.train_cat_filenames = tf.constant([CatOrDog.train_cats_dir + filename
                                                for filename in os.listdir(CatOrDog.train_cats_dir)])
        self.train_dog_filenames = tf.constant([CatOrDog.train_dogs_dir + filename
                                                for filename in os.listdir(CatOrDog.train_dogs_dir)])
        # 2、猫狗文件列表合并,并且初始化猫狗的目标值,0为猫,1为狗
        self.train_filenames = tf.concat([self.train_cat_filenames, self.train_dog_filenames], axis=-1)
        self.train_labels = tf.concat([
            tf.zeros(self.train_cat_filenames.shape, dtype=tf.int32),
            tf.ones(self.train_dog_filenames.shape, dtype=tf.int32)],
            axis=-1)

定义数据的获取方法,通过tf.data指定

    def get_batch(self):
        """获取dataset批次数据
        :return:
        """
        train_dataset = tf.data.Dataset.from_tensor_slices((self.train_filenames, self.train_labels))
        # 进行数据的map, 随机,批次和预存储
        train_dataset = train_dataset.map(
            map_func=_decode_and_resize,
            num_parallel_calls=tf.data.experimental.AUTOTUNE)
        train_dataset = train_dataset.shuffle(buffer_size=20000)
        train_dataset = train_dataset.batch(CatOrDog.batch_size)
        train_dataset = train_dataset.prefetch(tf.data.experimental.AUTOTUNE)
        return train_dataset

# 图片处理函数,读取,解码并且进行输入形状修改
def _decode_and_resize(filename, label):
    image_string = tf.io.read_file(filename)
    image_decoded = tf.image.decode_jpeg(image_string)
    image_resized = tf.image.resize(image_decoded, [256, 256]) / 255.0
    return image_resized, label

2、模型构建和封装

通过构造两层卷积+两个全连接层的网络

        self.model = tf.keras.Sequential([
            tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(256, 256, 3)),
            tf.keras.layers.MaxPooling2D(),
            tf.keras.layers.Conv2D(32, 5, activation='relu'),
            tf.keras.layers.MaxPooling2D(),
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(64, activation='relu'),
            tf.keras.layers.Dense(2, activation='softmax')
        ])

3、训练以及测试过程实现

模型训练过程,这里就免去指定ckpt以及tensorboard的callbacks了,可以自己去指定实验

    def train(self, train_dataset):
        """训练过程
        :return:
        """
        self.model.compile(
            optimizer=tf.keras.optimizers.Adam(learning_rate=CatOrDog.learning_rate),
            loss=tf.keras.losses.sparse_categorical_crossentropy,
            metrics=[tf.keras.metrics.sparse_categorical_accuracy]
        )

        self.model.fit(train_dataset, epochs=CatOrDog.num_epochs)
        self.model.save_weights("./ckpt/cat_or_dogs.h5")

测试过程

  • 1、需要提供一个读取测试数据及的dataset数据集
  • 2、进行model的预测,可以先进行模型保存之后,再次读取进行预测
    def test(self):

        # 1、构建测试数据集
        test_cat_filenames = tf.constant([CatOrDog.test_cats_dir + filename
                                          for filename in os.listdir(CatOrDog.test_cats_dir)])
        test_dog_filenames = tf.constant([CatOrDog.test_dogs_dir + filename
                                          for filename in os.listdir(CatOrDog.test_dogs_dir)])
        test_filenames = tf.concat([test_cat_filenames, test_dog_filenames], axis=-1)
        test_labels = tf.concat([
            tf.zeros(test_cat_filenames.shape, dtype=tf.int32),
            tf.ones(test_dog_filenames.shape, dtype=tf.int32)],
            axis=-1)
                # 2、构建dataset
        test_dataset = tf.data.Dataset.from_tensor_slices((test_filenames, test_labels))
        test_dataset = test_dataset.map(_decode_and_resize)
        test_dataset = test_dataset.batch(batch_size)

        # 3、加载模型进行评估
        if os.path.exists("./ckpt/cat_or_dogs.h5"):
            self.model.load_weights("./ckpt/cat_or_dogs.h5")

        print(self.model.metrics_names)
        print(self.model.evaluate(test_dataset))

4.6.6 ImageDataGenerator介绍

当我们需要做数据增强的时候,我们需要通过实时数据增强生成张量图像数据批次。数据将不断循环(按批次)。下面就介绍一个强大的工具,能够对于提供过来的本地图片读取的数据还是其他工具读取的图片数据进行在线数据怎强。

1、训练的时候读取本地图片以及类别

tf.keras.preprocessing.image.ImageDataGenerator(
    featurewise_center=False, samplewise_center=False,
    featurewise_std_normalization=False, samplewise_std_normalization=False,
    zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.0,
    height_shift_range=0.0, brightness_range=None, shear_range=0.0, zoom_range=0.0,
    channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
    vertical_flip=False, rescale=None, preprocessing_function=None,
    data_format=None, validation_split=0.0, dtype=None
)
  • 完整参数介绍参考TensorFlow官网文档:https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator#view-aliases

  • train_generator = ImageDataGenerator()

    • 生产图片的批次张量值并且提供数据增强功能
    • rescale=1.0 / 255,:标准化
    • zca_whitening=False: # zca白化的作用是针对图片进行PCA降维操作,减少图片的冗余信息
    • rotation_range=20:默认0, 旋转角度,在这个角度范围随机生成一个值
    • width_shift_range=0.2,:默认0,水平平移
    • height_shift_range=0.2:默认0, 垂直平移
    • shear_range=0.2:# 平移变换
    • horizontal_flip=True:水平翻转
    • zoom_range:随机缩放的范围

2、使用方法介绍

  • 使用flow(x, y, batch_size)
(x_train, y_train), (x_test, y_test) = cifar10.load_data()

datagen = ImageDataGenerator(
        featurewise_center=True,
        featurewise_std_normalization=True,
        rotation_range=20,
        width_shift_range=0.2,
        height_shift_range=0.2,
        horizontal_flip=True)

for e in range(epochs):
        print('Epoch', e)
        batches = 0
        for x_batch, y_batch in datagen.flow(x_train, y_train, batch_size=32):
            model.fit(x_batch, y_batch)
  • 使用train_generator.flow_from_directory(

    • directory=path,# 读取目录

    • target_size=(h,w),# 目标形状

    • batch_size=size,# 批数量大小

    • class_mode='binary', # 目标值格式,One of "categorical", "binary", "sparse",

      • "categorical" :2D one-hot encoded labels
      • "binary" will be 1D binary labels
    • shuffle=True

    • 这个API固定了读取的目录格式,参考:

    • data/
          train/
              dogs/
                  dog001.jpg
                  dog002.jpg
                  ...
              cats/
                  cat001.jpg
                  cat002.jpg
                  ...
          validation/
              dogs/
                  dog001.jpg
                  dog002.jpg
                  ...
              cats/
                  cat001.jpg
                  cat002.jpg
                  ...
      

4.6.7 案例:ImageDataGenerator与迁移学习结合(基于VGG)

4.6.7.1 案例效果

  uploading.4e448015.gif正在上传…重新上传取消

Epoch 1/2
 1/13 [=>............................] - ETA: 3:20 - loss: 1.6811 - acc: 0.1562
 2/13 [===>..........................] - ETA: 3:01 - loss: 1.5769 - acc: 0.2500
 3/13 [=====>........................] - ETA: 2:44 - loss: 1.4728 - acc: 0.3958
 4/13 [========>.....................] - ETA: 2:27 - loss: 1.3843 - acc: 0.4531
 5/13 [==========>...................] - ETA: 2:14 - loss: 1.3045 - acc: 0.4938
 6/13 [============>.................] - ETA: 1:58 - loss: 1.2557 - acc: 0.5156
 7/13 [===============>..............] - ETA: 1:33 - loss: 1.1790 - acc: 0.5759
 8/13 [=================>............] - ETA: 1:18 - loss: 1.1153 - acc: 0.6211
 9/13 [===================>..........] - ETA: 1:02 - loss: 1.0567 - acc: 0.6562
10/13 [======================>.......] - ETA: 46s - loss: 1.0043 - acc: 0.6875 
11/13 [========================>.....] - ETA: 31s - loss: 0.9580 - acc: 0.7159
12/13 [==========================>...] - ETA: 15s - loss: 0.9146 - acc: 0.7344
13/13 [==============================] - 249s 19s/step - loss: 0.8743 - acc: 0.7519 - val_loss: 0.3906 - val_acc: 0.9000
Epoch 2/2
 1/13 [=>............................] - ETA: 2:56 - loss: 0.3862 - acc: 1.0000
 2/13 [===>..........................] - ETA: 2:44 - loss: 0.3019 - acc: 1.0000
 3/13 [=====>........................] - ETA: 2:35 - loss: 0.2613 - acc: 1.0000
 4/13 [========>.....................] - ETA: 2:01 - loss: 0.2419 - acc: 0.9844
 5/13 [==========>...................] - ETA: 1:49 - loss: 0.2644 - acc: 0.9688
 6/13 [============>.................] - ETA: 1:36 - loss: 0.2494 - acc: 0.9688
 7/13 [===============>..............] - ETA: 1:24 - loss: 0.2362 - acc: 0.9732
 8/13 [=================>............] - ETA: 1:10 - loss: 0.2234 - acc: 0.9766
 9/13 [===================>..........] - ETA: 58s - loss: 0.2154 - acc: 0.9757 
10/13 [======================>.......] - ETA: 44s - loss: 0.2062 - acc: 0.9781
11/13 [========================>.....] - ETA: 29s - loss: 0.2007 - acc: 0.9801
12/13 [==========================>...] - ETA: 14s - loss: 0.1990 - acc: 0.9792


13/13 [==============================] - 243s 19s/step - loss: 0.1923 - acc: 0.9809 - val_loss: 0.1929 - val_acc: 0.9300

4.6.7.2 数据集以及迁移需求

数据集是某场景下5个类别图片的识别

 

我们利用现有的VGG模型去进行微调

4.6.7.3 思路和步骤

  • 读取本地的图片数据以及类别
    • keras.preprocessing.image import ImageDataGenerator提供了读取转换功能
  • 模型的结构修改(添加我们自定的分类层)
  • freeze掉原始VGG模型
  • 编译以及训练和保存模型方式
  • 输入数据进行预测

4.6.7.4 训练的时候读取本地图片以及类别

  • 基于上面工具的读取代码
train_datagen = ImageDataGenerator(
            rescale=1./255,
            shear_range=0.2,
            zoom_range=0.2,
            horizontal_flip=True)

test_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
                                                    'data/train',
                                                    target_size=(150, 150),
                                                    batch_size=32,
                                                    class_mode='binary')

validation_generator = test_datagen.flow_from_directory(
                                                        'data/validation',
                                                        target_size=(150, 150),
                                                        batch_size=32,
                                                        class_mode='binary')
# 使用fit_generator
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=validation_generator,
validation_steps=800)

代码:

首先导入包

import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.applications.vgg16 import VGG16
import numpy as np
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

我们定义一个迁移学习的类,然后进行相关属性设置和读取代码

class TransferModel(object):

    def __init__(self):

        # 定义训练和测试图片的变化方法,标准化以及数据增强
        self.train_generator = ImageDataGenerator(rescale=1.0 / 255.0,
                                                  shear_range=0.2,
                                                  zoom_range=0.2,
                                                  horizontal_flip=True)
        self.test_generator = ImageDataGenerator(rescale=1.0 / 255.0)

        # 指定训练数据和测试数据的目录
        self.train_dir = "./data/train"
        self.test_dir = "./data/test"

        # 定义图片训练相关网络参数
        self.image_size = (224, 224)
        self.batch_size = 32

    def read_img_to_generator(self):
        """
        读取本地图片以及类别
        :return:训练数据和测试数据迭代器
        """
        train_gen = self.train_generator.flow_from_directory(directory=self.train_dir,
                                                             target_size=self.model_size,
                                                             batch_size=self.batch_size,
                                                             class_mode='binary',
                                                             shuffle=True)
        test_gen = self.test_generator.flow_from_directory(directory=self.test_dir,
                                                           target_size=self.model_size,
                                                           batch_size=self.batch_size,
                                                           class_mode='binary',
                                                           shuffle=True)
        return train_gen, test_gen

打印结果为

<keras_preprocessing.image.DirectoryIterator object at 0x12f52cf28>

4.6.7.5 VGG模型的修改添加全连接层-GlobalAveragePooling2D

  • notop模型:
    • 是否包含最后的3个全连接层(whether to include the 3 fully-connected layers at the top of the network)。用来做fine-tuning专用,专门开源了这类模型。

‘weights='imagenet'’,意思是VGG在imagenet比赛中预训练的权重,使用resnet训练

# 在__init__中添加
self.base_model = VGG16(weights='imagenet', include_top=False)

base_model会有相关属性,模型的输入结构:inputs,模型的输出结构,我们修改需要得到已有VGG的输入和自定义模型的输出构建成一个新的模型。

模型源码:

    if include_top:
        # Classification block
        x = layers.Flatten(name='flatten')(x)
        x = layers.Dense(4096, activation='relu', name='fc1')(x)
        x = layers.Dense(4096, activation='relu', name='fc2')(x)
        x = layers.Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)
  • 一个GlobalAveragePooling2D + 两个全连接层
    • 在图像分类任务中,模型经过最后CNN层后的尺寸为[bath_size, img_width, img_height, channels],通常的做法是:接一个flatten layer,将尺寸变为[batch_size, w channels]再至少接一个FC layer,这样做的最大问题是:模型参数多,且容易过拟合。
    • 利用pooling layer来替代最后的FC layer
    •  

解释如下:

from keras.layers import Dense, Input, Conv2D
from keras.layers import MaxPooling2D, GlobalAveragePooling2D

x = Input(shape=[8, 8, 2048])  
# 假定最后一层CNN的层输出为(None, 8, 8, 2048)
x = GlobalAveragePooling2D(name='avg_pool')(x)  # shape=(?, 2048)
# 取每一个特征图的平均值作为输出,用以替代全连接层
x = Dense(1000, activation='softmax', name='predictions')(x)  # shape=(?, 1000)
# 1000为类别
  • 5类图片识别模型修改

我们需要拿到基础VGG模型,并且VGG提供所有层参数训练好的模型和没有全连接层参数的模型notop模型

from tensorflow.keras import Model
    def refine_base_model(self):
        """
        微调VGG结构,5blocks后面+全局平均池化(减少迁移学习的参数数量)+两个全连接层
        :return:
        """
        # 1、获取原notop模型得出
        # [?, ?, ?, 512]
        x = self.base_model.outputs[0]

        # 2、在输出后面增加我们结构
        # [?, ?, ?, 512]---->[?, 1 * 1 * 512]
        x = tf.keras.layers.GlobalAveragePooling2D()(x)

        # 3、定义新的迁移模型
        x = tf.keras.layers.Dense(1024, activation=tf.nn.relu)(x)
        y_predict = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x)

        # model定义新模型
        # VGG 模型的输入, 输出:y_predict
        transfer_model = tf.keras.models.Model(inputs=self.base_model.inputs, outputs=y_predict)

        return transfer_model

4.6.7.6 freeze VGG模型结构

目的:让VGG结构当中的权重参数不参与训练,只训练我们添加的最后两层全连接网络的权重参数

  • 通过使用每一层的layer.trainable=False
    def freeze_vgg_model(self):
        """
        freeze掉VGG的结构
        :return:
        """
        for layer in self.base_model.layers:
            layer.trainable = False

4.6.7.7 编译和训练

  • 编译

同样还是进行编译, 在迁移学习中算法:学习率初始化较小的值,0.001,0.0001,因为已经在已训练好的模型基础之上更新,所以不需要太大学习率去学习

    def compile(self, model):
        """
        编译模型
        :return:
        """
        model.compile(optimizer=tf.keras.optimizers.Adam(),
                      loss=tf.keras.losses.sparse_categorical_crossentropy,
                      metrics=['accuracy'])
        return None

    def fit_generator(self, model, train_gen, test_gen):
        """
        训练模型,model.fit_generator()不是选择model.fit()
        :return:
        """
        # 每一次迭代准确率记录的h5文件
        modelckpt = tf.keras.callbacks.ModelCheckpoint('./ckpt/transfer_{epoch:02d}-{val_accuracy:.2f}.h5',
                                                       monitor='val_accuracy',
                                                       save_best_only=True,
                                                       save_weights_only=False,
                                                       mode='auto',
                                                       period=1)

        model.fit_generator(train_gen, epochs=3, validation_data=test_gen, callbacks=[modelckpt])

        return None
  • main函数
if __name__ == '__main__':
    tm = TransferModel()

    train_gen, test_gen = tm.read_img_to_generator()
    model = tm.refine_vgg_model()

    tm.freeze_vgg_model()
    tm.compile(model)
    tm.fit(model, train_gen, test_gen)

4.6.7.8 进行预测

预测的步骤就是读取图片以及处理到模型中预测,加载我们训练的模型

    def predict(self, model):
        """预测输入图片的类别
        :return:
        """
        # 1、加载模型训练好的权重
        model.load_weights("./ckpt/transfer_01-0.84.h5")

        # 2、读取图片处理图片数据,形状,数据归一化
        image = tf.io.read_file("./data/test/dinosaurs/402.jpg")
        image_decoded = tf.image.decode_jpeg(image)
        image_resized = tf.image.resize(image_decoded, [224, 224]) / 255.0
        # 3维-->4维的形状改变
        img = tf.reshape(image_resized, (1, image_resized.shape[0], image_resized.shape[1], image_resized.shape[2]))
        print("修改之后的形状:", img.shape)

        # 3、输入数据做预测
        y_predict = model.predict(img)

        index = np.argmax(y_predict, axis=1)

        print(self.label_dict[str(index[0])])

        return None

建立图片类别的字典

self.label_dict = {
            '0': 'bus',
            '1': 'dinosaurs',
            '2': 'elephants',
            '3': 'flowers',
            '4': 'horse'
        }

4.6.6 总结

  • Checkpoint使用
  • TensorBoard使用
  • tf.data模块使用
  • ImageDataGenerator的使用
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值