H = model.fit(trainX, trainY, batch_size=BS, epochs=EPOCHS, validation_split=0.2, shuffle=True)
# plot the training loss and accuracy
training_vis(H)
# set the matplotlib backend so figures can be saved in the background
import matplotlib
matplotlib.use("Agg")
# import the necessary packages
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import Adam
from sklearn.model_selection import train_test_split
from keras.preprocessing.image import img_to_array
from keras.utils import to_categorical
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import random
import cv2
import os
import sys
from keras.utils.vis_utils import plot_model
sys.path.append('..')
from net.lenet import LeNet
# from lenet import LeNet
def args_parse():
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-dtest", "--dataset_test", required=True,
help="path to input dataset_test")
ap.add_argument("-dtrain", "--dataset_train", required=True,
help="path to input dataset_train")
ap.add_argument("-m", "--model", required=True,
help="path to output model")
ap.add_argument("-p", "--plot", type=str, default="plot.png",
help="path to output accuracy/loss plot")
args = vars(ap.parse_args())
return args
# initialize the number of epochs to train for, initial learning rate,
# and batch size
EPOCHS = 35
INIT_LR = 1e-3
BS = 32
CLASS_NUM = 2 #61
norm_size = 64 #32
# define the function
def training_vis(hist):
loss = hist.history['loss']
val_loss = hist.history['val_loss']
acc = hist.history['acc']
val_acc = hist.history['val_acc']
# make a figure
fig = plt.figure(figsize=(8,4))
# subplot loss
ax1 = fig.add_subplot(121)
ax1.plot(loss, label='train_loss')
ax1.plot(val_loss, label='val_loss')
ax1.set_xlabel('Epochs')
ax1.set_ylabel('Loss')
ax1.set_title('Loss on Training and Validation Data')
ax1.legend()
# subplot acc
ax2 = fig.add_subplot(122)
ax2.plot(acc,label='train_acc')
ax2.plot(val_acc,label='val_acc')
ax2.set_xlabel('Epochs')
ax2.set_ylabel('Accuracy')
ax2.set_title('Accuracy on Training and Validation Data')
ax2.legend()
plt.tight_layout()
plt.savefig('plot_nogenerator.png')
#plt.show() 因为使用的是Agg,所以无法使用
def load_data(path):
print("[INFO] loading images...")
data = []
labels = []
# grab the image paths and randomly shuffle them
imagePaths = sorted(list(paths.list_images(path)))
random.seed(42)
random.shuffle(imagePaths)
# loop over the input images
for imagePath in imagePaths:
# load the image, pre-process it, and store it in the data list
image = cv2.imread(imagePath)
image = cv2.resize(image, (norm_size, norm_size))
image = img_to_array(image)
data.append(image)
# extract the class label from the image path and update the
# labels list
label = int(imagePath.split(os.path.sep)[1][0])
labels.append(label)
# scale the raw pixel intensities to the range [0, 1]
data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)
# convert the labels from integers to vectors
labels = to_categorical(labels, num_classes=CLASS_NUM)
return data, labels
def train(aug, trainX, trainY, testX, testY):
# initialize the model
print("[INFO] com