[论文笔记] Deep Back-Projection Networks For Super-Resolution

[论文笔记] DPDN

一,主要贡献梳理

  1. 误差回传机制:这里是使用了迭代的错误反馈机制,通过计算上采样和下采样单元的投影误差来获得更好的效果。
  2. 相互连接的上-下采样阶段:前馈结构可视为一种映射,仅仅将输入的代表性特征到输出空间。这种方法对于LR到HR的映射是不成功的,尤其是大尺度因子,这是因为LR空间的特征局限性。因此我们的网络不仅利用上采样层生成多样的HR特征并且利用下采样层将其映射到LR空间
  3. 深度级联:这里是将不同上采样层的HR特征做concat,放在网络的最后
  4. dense连接:特征的复用,提高网络的精度

二,常见SR模型

在这里插入图片描述

三,论文模型梳理

1.迭代投影单元

使用原因

反馈网络将预测过程分解为多个步骤,使模型具有自校正过程。

上映射单元定义

在这里插入图片描述

这个看起来很复杂,但是其实很容易理解。就是将LR图像先进行上采样得到HR,再进行下采样,将输出和输入的LR计算得到残差,再对残差进行上采样,得到结果与前面的HR进行叠加得到输出结果。上映射单元结构如下所示:

在这里插入图片描述

下映射单元定义

在这里插入图片描述

在这里插入图片描述
需要注意的是,在projection unit使用的卷积层中,卷积核大小是比较大的(8x8或12x12),在其他的网络中,过大的卷积核会导致参数增多,训练变慢,但是因为projection unit的迭代使用,即使在浅层网络中,在大尺度因子下也能表现出更好的性能。

2.Dense映射单元

使用原因

  1. 缓解梯度消失问题,增强性能
  2. 特征重用,增加精度

与最初的DenseNets不同,论文避免了dropout和batch规范,这些规范不适合SR,因为它们消除了特性的范围灵活性。
原因解释

1564826267254.png

其中每个单元的输入都是之前所有可用单元输出的迭代,为了保证单元输入和输出通道数一致,这里使用了一个1*1的卷积降低通道数(除了前3个投影单元)。

3.整体框架

在这里插入图片描述
整体模块可以分为3个部分

  1. 初始特征提取部分: 就是一个3x3(维度:n0)加上一个1x1(维度:nR 降维为投影单元的filter数量。原因:为了配合稠密连接)的卷积
  2. 误差回传模块:就是上面迭代投影模块的叠加。(可以看到稠密连接)
  3. 重建模块:使用一个 Conv(3,3) 来生成HR大小的图像。

四,loss选择

​ 本文选择的依旧是MSE(L2损失),原因没有解释

​ 貌似,是根据实验结果发现L2损失更加适合(其实有论文表示L1有时候比较好)

五,实验细节

  1. 反射单元的filter size大小与尺度因子有关

  2. 基于何凯明的那篇 Delving deep into rectifiers: Surpassing human-level performance on imagenet classification来初始化参数,激活函数均为参数化的整流线性单元(PReLUs)

  3. 利用数据集DIV2K、Flickr和ImageNet来训练所有网络。无数据增强

  4. 为了生成LR图像,我们使用双三次缩小特定比例因子下的HR图像

  5. 模型分析

    1. 深度S (T = 2), M (T = 4), and L (T = 6)在这里插入图片描述
    2. 参数分析在这里插入图片描述
    3. 不同scale的输出在这里插入图片描述
    4. 分析稠密连接的作用在这里插入图片描述
  6. 实验结果比较

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值