课程3 波动光学引论(二) (干涉引论)(视频P7-P9)

光波干涉引论

波的叠加

广义上说, 系统总响应与分别响应之间的关系。
这里分两种情况区别对待:
(1) U ( p , t ) = U 1 ( p , t ) + U 2 ( p , t ) \textbf U(p,t) = \textbf U_1(p,t) + \textbf U_2(p,t) U(p,t)=U1(p,t)+U2(p,t)
波叠加满足叠加原理
(2) U ( p , t ) ≠ U 1 ( p , t ) + U 2 ( p , t ) \textbf U(p,t) ≠ \textbf U_1(p,t) + \textbf U_2(p,t) U(p,t)=U1(p,t)+U2(p,t)
叠加原理遭到破坏,不遵从叠加原理

实际情况是
在通常介质与通常光强的条件下, 叠加原理是成立的。这意味着波具有独立传播特性。波叠加原理是波独立传播实验定律的理论表述。其是有条件的。

叠加原理成立-----------线性介质 --------- 线性波动学
叠加原理不成立--------非线性介质 ------- 非线性波动学

在叠加原理成立的条件下考察叠加场的光强分布,还应区分以下两种情况:
在观测时间中,若 I ( p ) = I 1 ( p ) + I 2 ( p ) I(p) = I_1(p) + I_2(p) I(p)=I1(p)+I2(p),则为 非相干叠加;
I ( p ) = I 1 ( p ) + I 2 ( p ) + Δ I ( p ) ≠ I 1 ( p ) + I 2 ( p ) I(p) = I_1(p) + I_2(p) + \Delta I(p) ≠ I_1(p) + I_2(p) I(p)=I1(p)+I2(p)+ΔI(p)=I1(p)+I2(p) ,则为 相干叠加。

相干叠加,通常表示为 在交叠区域中出现明暗相间的干涉条纹-----光强在空间的重新分布。
亮处, I ( p ) > ( I 1 ( p ) + I 2 ( p ) ) I(p) > (I_1(p) + I_2(p)) I(p)>(I1(p)+I2(p))
暗处, I ( p ′ ) > ( I 1 ( p ′ ) + I 2 ( p ′ ) ) I(p') > (I_1(p') + I_2(p')) I(p)>(I1(p)+I2(p))

光波的相干条件:
1、两列波,若扰动方向正交,则必然为非相干叠加。
2、两列波,若频率不同,则必然为非相干叠加。频率相同的两列波,其叠加才可能为相干叠加,才能保留干涉项。

干涉项 Δ I = 2 I 1 I 2 c o s δ \Delta I =2 \sqrt{{I_1}{I_2}} cos\delta ΔI=2I1I2 cosδ

当同频、同振动方向得以保证,便可采用复振幅表示 双光束相干强度公式:
U ( p ) = U 1 ( p ) + U 2 ( p ) \textbf U(p) = \textbf U_1(p) + \textbf U_2(p) U(p)=U1(p)+U2(p)
I ( p ) = ( U 1 + U 2 ) ( U 1 + U 2 ) ∗ I(p) = (\textbf U_1 + \textbf U_2)(\textbf U_1 + \textbf U_2 )^* I(p)=(U1+U2)(U1+U2)
I ( p ) = I 1 ( p ) + I 2 ( p ) + 2 I 1 I 2 c o s δ ( p ) I(p) = I_1(p) + I_2(p) +2 \sqrt{{I_1}{I_2}} cos\delta(p) I(p)=I1(p)+I2(p)+2I1I2 cosδ(p)
I ( p ) = U 1 U 1 ∗ + U 2 U 2 ∗ + U 1 U 2 ∗ + U 1 ∗ U 2 I(p) = \textbf U_1 \textbf U_1^* + \textbf U_2 \textbf U_2^* + \textbf U_1 \textbf U_2^* + \textbf U_1^* \textbf U_2 I(p)=U1U1+U2U2+U1U2+U1U2
I ( p ) = ∣ U 1 ∣ 2 + ∣ U 2 ∣ 2 + 2 R e ( U 1 U 2 ∗ ) I(p) = |\textbf U_1 |^2 + |\textbf U_2 |^2 + 2 Re(\textbf U_1 \textbf U_2^*) I(p)=U12+U22+2Re(U1U2)
上述 5项公式 各有用处。

3、 若两列波,其交叠区中场点的相位差是不稳定的,则必然出现一副不稳定的干涉图样。为了获得稳定的干涉场,必须保证场点有稳定的相位差。(光波的独特性)

干涉场的反衬度

干涉条纹的极大极小值的比值:
γ = I M − I m I M + I m \gamma = \frac {I_M - I_m}{I_M + I_m} γ=IM+ImIMIm
其中,干涉极大值
I M = I 1 + i 2 + 2 I 1 I 2 , 当 ϕ = 2 k π ; I_M = I_1 + i_2 + 2\sqrt{I_1 I_2} ,当\phi = 2k \pi; IM=I1+i2+2I1I2 ,ϕ=2
干涉极小值
I m = I 1 + i 2 − 2 I 1 I 2 , 当 ϕ = ( 2 k + 1 ) π ; I_m = I_1 + i_2 - 2\sqrt{I_1 I_2} ,当\phi = (2k+1) \pi; Im=I1+i22I1I2 ,ϕ=(2k+1)π

考虑到
( I M − I m = 4 I 1 I 2 ) ( I M + I m = 2 ( I 1 + I 2 ) ) (I_M - I_m = 4\sqrt{I_1 I_2}) (I_M + I_m = 2(I_1 + I_2)) (IMIm=4I1I2 )(IM+Im=2(I1+I2))
于是
γ = 2 I 1 I 2 I 1 + I 2 = 2 A 1 A 2 A 1 2 + A 2 2 = 2 A 1 A 2 1 + ( A 1 A 2 ) 2 \gamma = \frac {2\sqrt{I_1 I_2}}{I_1 + I_2} = \frac{2 A_1 A_2}{A_1^2 + A_2^2} = \frac{2\frac{A_1}{A_2}}{1 + (\frac{A_1}{A_2})^2} γ=I1+I22I1I2 =A12+A222A1A2=1+(A2A1)22A2A1
γ的范围:0< = γ <= 1
双光束相干强度公式即可写为:
I ( p ) = I 0 ( 1 + γ c o s ϕ ( p ) ) I(p) = I_0 (1 + \gamma cos\phi(p)) I(p)=I0(1+γcosϕ(p))
其中 I0 = I1 +I2,是双光束光强的非相干叠加值。相干叠加的后果体现在 “交流项” γcosφ§,而系数γ反应了相干程度。

为了提高干涉场γ值,引出两个关于相干的补充条件:
(1)参与叠加的两束相干光的振幅比尽可能地接近1;
(2)参与叠加的两束相干光的传播方向之夹角,尽可能地减少。

自然光干涉,在傍轴条件下 α≈ 25°范围内,反衬度γ仅下降了5%。

线性光学系统

输入 ------输出
光学系统 ---------线行系统(当波叠加原理成立)
“变换” ————光学成像系统,光学信息处理系统

非相干系统,Q1,Q2,Q3…Qi 非相干系统。
I ( p ) = Σ I i ( p ) ,光强线性系统 I(p) =\Sigma I_i(p) ,光强线性系统 I(p)=ΣIi(p),光强线性系统

相干系统,Q1,Q2,Q3…Qi 相干系统。
U ( p ) = Σ U i ( p ) ,复振幅强线性系统 \textbf U(p) =\Sigma \textbf U_i(p),复振幅强线性系统 U(p)=ΣUi(p),复振幅强线性系统

杨氏干涉实验与平行光干涉

光波叠加的特殊性

普通光源,自发辐射为主,是个随机过程,其发光具有断续性、无规性、独立性
(1)波长有限长,微观上持续发光时间有限,t0 10-8 s, .>>T10-14s (可见光波段),即为准单色光概念。
(2)各波列之初相位不同,无规高频跃变。
在这里插入图片描述
(3)普通光源各部位发光之间无关联,表现在相位差上即无规高阶跃变。

于是,在同频率同振动方向出现的干涉场不稳定。则该光源的观测结果取决于接收器的时间响应能力t ,有以下情况:

(1)当 t >> t0, 而观测时间总选择 >t ,即
Δ t > t > > t 0 > > T \Delta t > t >> t_0 >> T Δt>t>>t0>>T
情况下,有必要对I(p,t)取时间平均值。
结果,
I ( p ) = I 1 ( p ) + I 2 ( p ) I(p) = I_1(p) + I_2(p) I(p)=I1(p)+I2(p)

(2) 当 t <= t0 ,即
Δ t < t < = t 0 > > T \Delta t < t <= t_0 >> T Δt<t<=t0>>T
人们可以拍摄到一幅幅干涉条纹,彼此之间有位错。

杨氏双孔干涉实验

杨氏双孔干涉实验示意图
杨氏双孔干涉实验相位差稳定
杨氏双孔干涉实验光强分布与间距公式

两束平行光的干涉场

杨氏双孔干涉实验则傍轴条件下的近似平直,严格意义上为曲率很大的双曲线形式。两束平行光干涉得到的是一组平直的干涉条纹,是非常严格的。
两束平行光干涉场公式如下:
U 1 ( x , y ) = A 1 e i ( k s i n θ 1 ⋅ x − ϕ 10 ) \textbf U_1(x,y) = A_1 e^{i(k sin\theta_1 ·x - \phi_{10})} U1(x,y)=A1ei(ksinθ1xϕ10)
U 2 ( x , y ) = A 2 e i ( − k s i n θ 2 ⋅ x − ϕ 20 ) \textbf U_2(x,y) = A_2 e^{i(-k sin\theta_2 ·x - \phi_{20})} U2(x,y)=A2ei(ksinθ2xϕ20)
于是,
U ( x , y ) = U 1 + U 2 \textbf U(x,y) = \textbf U_1 + \textbf U_2 U(x,y)=U1+U2
I ( x , y ) = A 1 2 + A 2 2 + 2 A ! A 2 c o s ϕ ( x , y ) I(x,y) = A_1^2 + A_2^2 + 2 A_! A_2 cos \phi(x,y) I(x,y)=A12+A22+2A!A2cosϕ(x,y)
ϕ ( x , y ) = k ( s i n θ 1 + s i n θ 2 ) x − ( ϕ 10 − ϕ 20 ) \phi (x,y) = k(sin \theta_1 +sin \theta_2 ) x - (\phi_{10} - \phi_{20}) ϕ(x,y)=k(sinθ1+sinθ2)x(ϕ10ϕ20)
(1) 条纹形状是严格平行于Y轴的直条纹;
(2) 令 △φ = 2π,即
k ( s i n θ 1 + s i n θ 2 ) Δ x = 2 π k (sin\theta_1 + sin\theta_2) \Delta x = 2\pi k(sinθ1+sinθ2)Δx=2π
可求出,条纹间距公式:
Δ x = λ s i n θ 1 + s i n θ 2 \Delta x =\frac {\lambda}{sin\theta_1 + sin\theta_2} Δx=sinθ1+sinθ2λ
△x ∈(∞,λ/2)

实际光路之一- -----------高频大角度
高频大角度干涉

实际光路之二 ------------ 低频小角度 马赫干涉仪
低频小角度干涉


参考内容

http://www.icourses.cn/sCourse/course_3571.html
https://wenku.baidu.com/view/280ca23943323968001c9207.html?fr=aladdin664466&ind=1&aigcsid=39662&qtype=0&lcid=1&queryKey=%E7%8E%B0%E4%BB%A3%E5%85%89%E5%AD%A6%E5%9F%BA%E7%A1%80&wkts=1708349418827&bdQuery=%E7%8E%B0%E4%BB%A3%E5%85%89%E5%AD%A6%E5%9F%BA%E7%A1%80

  • 23
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B叔最强哦

一起学习,一起加油

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值