光学简介与分类:
近代物理起源于光学
几何光学三定律、费马原理与相应推导
费马原理是几何光学最高的理论概括
·
费马原理可推导出几何三定律、各类透镜反射镜的物像关系。
折射定律
光线经过透明介质 入射角i1,折射角i2,入射介质折射率n1,折射介质折射率n2,则有公式:
n
1
∗
s
i
n
(
i
1
)
=
n
2
∗
s
i
n
(
i
2
)
.
\ n_1*sin(i_1)= n_2*sin(i_2)\,.
n1∗sin(i1)=n2∗sin(i2).
折射率必然与色散有关,因为不同波长的折射率有差。
惠更斯原理(次波源,微观 次波面)
波前的每一点可以认为是产生球面次波的点波源,而以后任何时刻的波前则可看作是这些次波的包络。
Tip:惠更斯原理在用于 界面的反射、折射时,将赋予折射率的物理意义
n
1
n
2
=
v
2
v
1
.
\frac{n_1}{ n_2}= \frac {v_2}{v_1} \,.
n2n1=v1v2.
由于 波速 = 频率 x 波长,令 n2 = 1,为真空介质。则该公式转化为
n
=
f
0
∗
λ
0
f
∗
λ
.
\ n= \frac{f_0 * \lambda_0}{ f * \lambda} \,.
n=f∗λf0∗λ0.
考虑到 在线性介质的光场中,扰动的时间频率f仅由光源决定,与介质无关,最终可得
n
=
λ
0
λ
.
\ n= \frac{\lambda_0}{ \lambda} \,.
n=λλ0.
光程
在相同时间内光在真空中传播的距离。当处于介质中时,即将路程进行折合,为 路程乘以 折射率。变折射率下,为折射率的变积分。
光程的意义:
1、相位差与光程的关系:沿着波的传播方向,位相逐点落后
ϕ
(
P
)
−
ϕ
(
Q
)
=
−
2
π
λ
0
∗
L
(
Q
P
)
.
\ \phi(P)-\phi(Q)= - \frac{2\pi}{ \lambda_0 } * L(QP)\,.
ϕ(P)−ϕ(Q)=−λ02π∗L(QP).
2、时差与光程的关系(c为光速)
t
P
−
t
Q
=
L
(
Q
P
)
c
.
\ t_P - t_Q= \frac{L(QP)} {c} \,.
tP−tQ=cL(QP).
费马原理
光线经过QP两点,虚拟路径有无数条,但实际光纤只走唯一一条QP,即 光线沿光程为平稳值(极小值、极大值、常数值)的路径进行传播。
费马原理 在均匀介质中 为 直线传播定律;在介质界面中 为 反射定律与折射定律。
费马原理推论:物像之间各条光线的光程是相等的-----物像等光程性。
意义:
严格等光程→严格成像;
近似等光程→近似成像;
非等光程→不成像;
三种反射面等光程点:
1、旋转椭圆面;2旋转抛物面;3、旋转双曲面;
以下为3种反射面的等光程点(齐明点)
透射面等光程点应用:油镜
阿贝正弦定理
显微镜上存在一个齐明点,满足阿贝正弦定理(近似等光程点),消除了一般轴外小物产生的慧差:
物方折射率 n、小物线度y 、 入射倾角 u ,像方折射率 n‘、小像线度y’ 、 出射倾角 u’ ,该公式又称蔡司公式。
n
∗
y
∗
s
i
n
u
=
n
′
∗
y
′
∗
s
i
n
u
′
.
\ n * y * sinu= n' * y' * sinu' \,.
n∗y∗sinu=n′∗y′∗sinu′.
双曲面透镜下 无穷远点与像点 等光程点
变折射率
变折射率环境:
寒冷海面上空(极光与海市蜃楼)随着高度折射率下降
炽热地面上空(沙洲神泉)随着高度折射率上升
折射率连续变化情况,光线会弯曲,同理声波。
大气电离层,随着高度升高,折射率成抛物型。
人工变折射率材质:
光纤,单极传输
微透镜
非线性光学
在强光条件下,光束被限制于介质棒中传播,发生衍射 ,发生类似凸透镜自聚焦与类似凹透镜自散焦。
强光光学中用于研究强光与晶体介质的相互作用。
信息光学中用于光存储的读出与写入。
变折射率下的光程方程
特殊 n(y) 任意微小弧元,微分线段 ds。
有
(
d
s
)
2
=
(
d
x
)
2
+
(
d
y
)
2
.
\ (ds)^2= (dx)^2 + (dy)^2 \,.
(ds)2=(dx)2+(dy)2.
即
(
d
y
d
x
)
2
=
(
d
s
d
x
)
2
−
1
.
(\frac{dy} {dx})^2= (\frac{ds} {dx})^2 -1 \,.
(dxdy)2=(dxds)2−1.
注意到
d
s
d
x
=
1
s
i
n
θ
\frac{ds} { dx} = \frac{1} {sin \theta} \,
dxds=sinθ1
根据折射定律可知
n
(
y
)
∗
s
i
n
θ
(
y
)
=
n
0
∗
s
i
n
θ
0
n(y) * sin\theta(y) = n_0 * sin \theta_0 \,
n(y)∗sinθ(y)=n0∗sinθ0
则有
(
d
y
/
d
x
)
2
=
(
(
n
(
y
)
/
(
n
0
∗
s
i
n
θ
0
)
)
2
−
1
(dy / dx) ^ 2 = ((n(y)/(n_0 * sin\theta_0))^2 - 1
(dy/dx)2=((n(y)/(n0∗sinθ0))2−1
根据初条件,求得 y(x) 的曲线函数。
对上式再次求导可获得
(
d
y
)
2
d
x
2
=
1
2
n
0
2
(
s
i
n
θ
)
2
∗
d
n
(
y
)
)
2
d
y
\frac{(dy)^2} { dx^2} = \frac{1}{2 n_0^2 (sin\theta)^2} * \frac{dn(y))^2}{dy}
dx2(dy)2=2n02(sinθ)21∗dydn(y))2
例:求聚光纤维中光线径迹
某种程度上可推得 光的波动性。可根据该情况小角近似推出聚光光纤的角度,祥见参考 视频。
参考内容
http://www.icourses.cn/sCourse/course_3571.html
https://wenku.baidu.com/view/280ca23943323968001c9207.html?fr=aladdin664466&ind=1&aigcsid=39662&qtype=0&lcid=1&queryKey=%E7%8E%B0%E4%BB%A3%E5%85%89%E5%AD%A6%E5%9F%BA%E7%A1%80&wkts=1708349418827&bdQuery=%E7%8E%B0%E4%BB%A3%E5%85%89%E5%AD%A6%E5%9F%BA%E7%A1%80