课程10 多元多维结构衍射与分形光学 (视频P32-37)

位移-----相移定理

含 N 哥全同单元的衍射屏-----多元结构
(1) 分布是否规则
(2) 取向是否有序?单元有形态
衍射屏结构
a 规则有序; b 规则无序; c 无规有序; d 无规无序;

光栅:含有N个全同单元的周期结构-----------既规则,又有序
光栅
光栅周期 d “光栅常数”
单元密度 1/d ~100/mm,600/mm 1200/mm
有效宽度 D ~ 5cm,10cm,高达30cm
含单元总数N N = D/d ~5cm600/mm 3104 >>>1
故 刻制一块母光栅技术工艺 “高精度”、“高稳定”、“长时间”

位移----相移定理
定理表述:在一个夫琅禾费衍射系统中,当图像位移时,其夫琅禾费衍射将响应一个相移。
定量关系为 位移(x0,y0) → ←相移(δ1,δ2)
这里
δ 1 = − k x 0 s i n θ 1 , δ 2 = − k y 0 s i n θ 2 \delta_1 =-k x_0 sin\theta_1,\delta_2 = -k y_0 sin\theta_2 δ1=kx0sinθ1δ2=ky0sinθ2
位移相移定理
图像的位移
图像的位移
原图像 t(x,y) →衍射场U(θ1,θ2)
位移后的图像 t(x-x0,y-y0)→ 衍射场U’(θ1,θ2)=U(θ1,θ2) e^{-ik(x0 sinθ1 +y0 sinθ2)} = U(θ1,θ2) e ^i(δ1 + δ2)^
其中相移量
δ 1 = − k x 0 s i n θ 1 \delta_1 = -k x_0 sin\theta_1 δ1=kx0sinθ1
δ 2 = − k y 0 s i n θ 2 \delta_2 = -k y_0 sin\theta_2 δ2=ky0sinθ2
注:
(1) 该定理只适用于夫琅禾费衍射场,或者说对夫琅禾费衍射而言,相移量与位移量是线性关系-------线性相移因子。
(2) 证明过程中,隐含了“系统具有空不变性”-------------至少要求“透镜孔径是极大”

应用于多元有序结构
多元有序结构
设中心单元产生的衍射场 U(θ1,θ2),其它单元,分别位移rj(xj,yj)。相应的相移量
( δ 1 j , δ 2 j ) = − k ( x j s i n θ 1 , y j s i n θ 2 ) (\delta_{1j},\delta_{2j}) = -k(x_j sin\theta_1, y_j sin\theta_2) (δ1j,δ2j)=k(xjsinθ1,yjsinθ2)
于是 衍射场的组成
U 1 = U e i ( δ 11 + δ 21 ) . . . . . U_1 = U e^{i(\delta_{11} + \delta_{21})}..... U1=Uei(δ11+δ21).....
总的衍射场
U ( θ 1 , θ 2 ) = Σ j = 0 N − 1 U j = u ( Σ 0 N − 1 e i ( δ 1 j + δ 2 j ) ) U(\theta_1,\theta_2) = \Sigma_{j=0}^{N-1} U_j= u(\Sigma_{0}^{N-1} e^{i(\delta_{1j}+\delta_{2j})}) U(θ1,θ2)=Σj=0N1Uj=u(Σ0N1ei(δ1j+δ2j))
改写了含N个全同单元衍射屏产生的夫琅禾费衍射场,为
U ( θ 1 , θ 2 ) = u ( θ 1 , θ 2 ) S ( θ 1 , θ 2 ) U(\theta_1,\theta_2) = u(\theta_1,\theta_2) S(\theta_1,\theta_2) U(θ1,θ2)=u(θ1,θ2)S(θ1,θ2)
其中u,单元衍射因子,单元因子,形状因子
S = Σ 0 N − 1 e i ( δ 1 j + δ 2 j ) S = \Sigma_{0}^{N-1} e^{i(\delta_{1j}+\delta_{2j})} S=Σ0N1ei(δ1j+δ2j)
S为衍射场结构因子,分布因子。
总之,夫琅禾费场 = 单元因子*结构因子

一维光栅

应用于光栅----------规则排列的有序结构
一维多缝光栅
其单元(缝)衍射因子
U ( θ ) ∝ s i n α α , α = π a s i n θ λ U(\theta) ∝ \frac{sin\alpha}{\alpha}, \alpha =\frac{\pi a sin\theta}{\lambda} U(θ)αsinα,α=λπasinθ
其结构因子
S ( θ ) = Σ 1 N e i δ j ) = ( 1 + e i δ j + e i 2 δ j + . . . + e i ( N − 1 ) δ j ) = 1 − e i N δ 1 − e i δ , δ = k d s i n θ S(\theta) = \Sigma_{1}^{N} e^{i \delta_j)} = (1 + e^{i \delta_j}+ e^{i 2\delta_j}+...+ e^{i (N-1)\delta_j}) = \frac{1-e^{i N \delta}}{1-e^{i\delta}}, \delta = kd sin\theta S(θ)=Σ1Neiδj)=(1+eiδj+ei2δj+...+ei(N1)δj)=1eiδ1eiNδ,δ=kdsinθ
改写为
S ( θ ) = e i ( N − 1 ) β s i n ( N β ) s i n β , β = δ 2 = π d s i n θ λ S(\theta) = e^{i(N-1)\beta} \frac{sin(N\beta)}{sin\beta},\beta = \frac{\delta}{2} = \frac{\pi d sin\theta}{\lambda} S(θ)=ei(N1)βsinβsin(),β=2δ=λπdsinθ

其他孔型的一维光栅
这些光栅结构因子一致,故衍射强度分布函数为
I ( θ 1 , θ 2 ) = ∣ u ( θ 1 , θ 2 ) ∣ 2 ( s i n ( N β ) s i n β ) 2 I(\theta_1,\theta_2) = |u(\theta_1,\theta_2)|^2 (\frac{sin(N\beta)}{sin\beta})^2 I(θ1,θ2)=u(θ1,θ2)2(sinβsin())2

衍射强度公式
(sinNβ/sinβ)2 主要特征,β = πd sinθ/λ
主极强位置(方位角)
当 d sinθk = Kλ K= 0、±1、±2、,
有 β = Kπ,致 (sinNβ/sinβ)2 =N2 极大
此时 I(θk) = N2 i(θk),即 N2 倍于单缝衍射在该处的强度。

主极强的半角宽度(体现“锐度”)
其左右第一暗点角方位(θk ±△θ)满足
d s i n ( θ k ± Δ θ ) = ( K ± 1 / N ) λ d sin(\theta_k ± \Delta \theta) = (K ± 1/N)\lambda dsin(θk±Δθ)=(K±1/N)λ

d c o s θ k Δ θ = λ N d cos\theta_k \Delta \theta = \frac{\lambda}{N} dcosθkΔθ=Nλ

Δ θ = λ N d c o s θ k = λ D c o s θ k \Delta \theta = \frac{\lambda}{Nd cos\theta_k}=\frac{\lambda}{D cos\theta_k} Δθ=Ndcosθkλ=Dcosθkλ

相邻主极强之间 有(N-1)个暗点,(N-2)个次极强。

i0 (sinα/α)2 的作用
影响主极强峰值(高度)
决定光功率在各主极强之间的分配;但不影响 主极强的位置与半角宽度。
某些情况喜爱,可能出现“缺级”
d s i n θ K = K λ , N 缝主极强位置 d sin\theta_K = K \lambda,N缝主极强位置 dsinθK=KλN缝主极强位置
a s i n θ K ′ = K ′ λ ,单缝零点位置 a sin\theta_K' = K' \lambda,单缝零点位置 asinθK=Kλ,单缝零点位置
当 θk = θk’ 时,K级主极强缺----落到了第K’零点

光栅光谱仪

光栅分光原理来源 结构因子(元间干涉因子)(sinNβ/sinβ)2
的主要两个特点: dsinθk = K λ ; △θk = λ/(D cosθk)
据公式1 ,不同波长的同级主极强,出现于不同的方位角-----形成光谱
在这里插入图片描述
造成了能量的浪费。

光栅光谱仪
实际光谱仪带动中央光栅G移动造成,M1、M2为反射镜,无色散。

光谱仪→ 用于分析光谱、显示光谱、摄谱仪
→ 用于挑选波长,单色仪

光谱仪的性能指标
角色散本领
角色散本领
根据光栅公式出发得
D θ = K d c o s θ K D_\theta = \frac{K}{d cos\theta_K} Dθ=dcosθKK
可见 d越小,Dθ越大;D0与N数无关,提高刻线密度是为了提高角色散能力。

线色散本领
线色散本领
定义
D l = δ l δ λ (单位: m m / A ) D_l =\frac{\delta l}{\delta \lambda} (单位:mm/A) Dl=δλδl(单位:mm/A
可知角色散本领与线色散本领的关系
D l = f D θ = f K d c o s θ K D_l = f D_\theta = f \frac{K}{d cos\theta_K} Dl=fDθ=fdcosθKK
当光谱仪作为单色仪用,线色散本领可通过公式转换为 单色线宽△λ。长焦距光谱仪主要提高线色散。

色分辨本领:可分辨的最小波长间隔
色分辨本领
结合瑞利判据和 角色散本领公式可得最小分辨波长间隔
δ λ m = λ K N \delta \lambda_m = \frac{\lambda}{KN} δλm=KNλ
定义色分辨本领
R = λ δ λ m = K N R = \frac{\lambda}{\delta \lambda_m} = KN R=δλmλ=KN
可见 N越大,R越大;R与d无关。

数量级
光栅光谱仪的分辨数量级
与FP分光仪相比精细不足,但量程大,适用于测量宽谱线轮廓。

选择使用光栅的两条原则
(1)三个性能指标:角色散本领、线色散本领、色分辨本领
(2) 满足 d>λ,无远场光谱。当d<=λ时,dsinθ = λ无解,远场光谱会产生隐失波。例如红外,长波长,d更大,Dθ本领不高,而傅里叶光谱仪则无此限制。

闪耀光栅
闪耀光栅
零级有色散,只产生一序光谱,克服了普通光栅的零级无色散、多序光谱能量损失的缺点。

二维周期结构的衍射

正交网格光栅
正交网格光栅
I ( θ 1 , θ 2 ) = i 0 ( s i n α 1 α 1 s i n α 2 α 2 ) 2 ( s i n ( N 1 β 1 ) s i n β 1 s i n ( N 2 β 2 ) s i n β 2 ) 2 I(\theta_1,\theta_2) = i_0(\frac{sin\alpha_1}{\alpha_1} \frac{sin\alpha_2}{\alpha_2})^2 (\frac{sin(N_1\beta_1)}{sin\beta_1} \frac{sin(N_2\beta_2)}{sin\beta_2})^2 I(θ1,θ2)=i0(α1sinα1α2sinα2)2(sinβ1sin(N1β1)sinβ2sin(N2β2))2
x:(N1,d1) y:(N2,d2)
β 1 = π d 1 s i n θ 1 λ , β 2 = π d 2 s i n θ 2 λ \beta_1 = \frac{\pi d_1 sin\theta_1}{\lambda}, \beta_2 = \frac{\pi d_2 sin\theta_2}{\lambda} β1=λπd1sinθ1,β2=λπd2sinθ2
次波群体班组思想及相应计算程序
由单孔一单元共组成 排孔各单元

矩孔二维光栅、圆点二维光栅也可通过该思路推出。

二维晶片的共面衍射
二维晶片的共面衍射
考虑到,沿平行x轴方向的每排内部各点是同相位的,故排内点间干涉满足类似光栅方程的形式
d 1 s i n θ = k 1 λ , k 1 = 0 、 ± 1 、 ± 2... d_1 sin\theta = k_1 \lambda, k_1 =0、±1、±2... d1sinθ=k1λ,k1=0±1±2...
再考虑到,沿Z轴方向相邻两排之间的光程差为 d2,沿 θ衍射方向,相邻两排的光程差又有-d1 cosθ,故面内排间干涉的主极强方向满足方程:
d 1 − d 2 c o s θ = k 2 λ , k 2 = 0 、 1 、 2 、 . . . d_1 - d_2 cos\theta = k_2 \lambda,k_2 = 0、1、2、... d1d2cosθ=k2λk2=012...
当入射光为单色光,且d1 = d2 = 10λ时,满足上式的k1值是受限制的 |k1|<=10,
衍射角θ的取值是离散的:
s i n θ = k 1 10 , k 1 = 0 、 ± 1 、 ± 2... sin\theta = \frac{k_1}{10},k_1 =0、±1、±2... sinθ=10k1k1=0±1±2...
将这些值带入,经过二次挑选,只有那些能保证k2取值为整数。最终成为二维晶片的衍射主极强方向,可解出:
k 2 = d 2 λ − d 2 λ c o s θ = d λ − d λ 1 − ( s i n θ ) 2 = 10 − 100 − k 1 2 k_2 =\frac{d_2}{\lambda}- \frac{d_2}{\lambda}cos\theta = \frac{d}{\lambda} - \frac{d}{\lambda} \sqrt{1-(sin\theta)^2}=10 - \sqrt{100-k_1^2} k2=λd2λd2cosθ=λdλd1(sinθ)2 =10100k12
满足条件的各解如图
各解值

三维周期结构与晶体对x射线的衍射

有效衍射 术语含义
由光栅公式 d sinθk = k λ
可获得一般估算(数量级)
d<= λ 无效衍射,隐失波

102 λ > d > λ 有效衍射---------出现
衍射图样,敏感地反映物质结构

d> 103 λ 无效衍射,几何光学

着眼于 衍射图样应用于微结构分析
x射线衍射结构无法通过人工机械精加工满足
天然晶体的三维空间结构 空间周期是 A量级,刚好可以进行有效的x射线衍射。------光子晶体学
微波的布拉格衍射
零维→一维→二维→三维依次考虑

一维零级衍射即线内点间干涉有无穷多个方向,而到了二维零级衍射即面内线间干涉仅保留下一个方向。且最终给出的衍射方向还需满足面间干涉的条件才能成立有效存在。

晶体三维光栅的布拉格衍射斑
劳厄相、德拜相
(1)单晶体、多色(连续谱)→波长选择性, 可造成劳厄相
(2)单色、多晶粉末 →方向选择性 可造成 德拜相 ,由于多晶粉末,随机取向,存在不相同性,故存在布拉格衍射。
(3)旋转单晶法、单色入射

认证了
(1) x射线是一种电磁波;
(2) 晶体是一个三维周期性结构,可以用三维空间点阵描述其特性。

三维光栅具有 色选择性、角度选择性,此乃体全息图实现白光再现的依据。
光子在三维晶体里运动类似于电子——————光子学

劳厄方程 与布拉格方程等价,可相互导出。

无规分布衍射

二维无规随机分布衍射
位置无规性,故相移随机分布。
大量规则分布圆孔衍射,则出现多个新的主极强;若大量横向位置随机无规随机分布圆孔衍射,则相位差随机量,出现一个艾里斑;
规则分布圆孔衍射
无规随机分布圆孔衍射
横向位置的无规分布,导致交叉项不为0。
受抑无规行走的概念。

分形光学----自相似结构的衍射

在这里插入图片描述
康托尔集合与康托尔条幅
自相似结构的衍射,几何分析
对应夫琅禾费衍射有何特点:康托尔条幅衍射图像如下图所示康托尔条幅的衍射图像

在1995年左右日本东京光学会议上,正式提出分形光学的概念:以分形结构作为衍射屏来研究其特征。

Talbot 效应(光栅自成像)
光栅自成像效应
光栅每相隔一段距离,无透镜结构将重新出现光栅的衍射图像,波在沿纵向传播时,能重复自己。属于菲涅尔衍射。
实验归纳出纵向自重复的距离公式
Z m ≈ m 2 d 2 λ , m = 0 , 1 , 2 , 3... Z_m ≈ m \frac{2d^2}{\lambda}, m=0,1,2,3... Zmmλ2d2,m=0,1,2,3...
引起了人们很大的兴趣,相继出现了几种理论阐述。
现代重新引起人们的重视,应用于频谱分析与光学信息处理中。

理论意义:对波动性认识的一种新的形式。一个在横向具有周期性的波前向前传播时,会在纵向出现周期性 -----自重复现象。在三维波动空间中,其二维横向与一维横向之间的这等微妙关系,由Talbat效应生动地显示出来。

理论说明-------拟采用衍射平面波理论
(1)自重复现场出现在纵向衍射场中,目前衍射屏是一个黑白光栅,则光栅会出现一系列主极强。表明光栅后场 充满若干衍射平面波
考虑到光栅后场充满若干衍射平面波
(2) 考察这些平面波在纵向 Z≠ 0 区域的叠加;考虑到平面波的传播时,其振幅维持不变,故只须分析他们之间的相位关系--------看其是否在Z≠0的区域中
(3)
在这里插入图片描述
在 (XOY)面上,选择O点: U0波相位 φ0;U1波相位 φ1;相位关系(φ0-φ1);
在(XO’Y)面上,等高点O’:U0波相位 φ0’;U1波相位 φ1’;相位关系(φ0’-φ1’);
根据平面波函数标准形式(ky =0)
U ( r ) = A e i k ( s i n θ x + c o s θ z ) U(\textbf r) = A e^{ik(sin\theta x + cos\theta z)} U(r)=Aeik(sinθx+cosθz)
已经相位滞后量 φ0’ = φ0 + kz, φ1’ = φ1+kz cosθ
于是相位差
φ 0 ′ − φ 1 ′ = ( φ 0 − φ 1 ) + k z ( 1 − c o s θ ) φ_0'-φ_1'= (φ_0 - φ_1) + k z(1-cos\theta) φ0φ1=(φ0φ1)+kz(1cosθ)
为了满足自重复,应当要求
k z ( 1 − c o s θ ) = m 2 π , m = 0 、 ± 1 、 ± 2... ,即 Z m = m λ 1 − c o s θ k z(1-cos\theta) = m 2\pi,m = 0、±1、±2...,即 Z_m = m \frac{\lambda}{1-cos\theta} kz(1cosθ)=m2πm=0±1±2...,即Zm=m1cosθλ
(4) 应用于一维光栅:若干离散平面波成分衍射角
代入
s i n θ k = k λ d k = 0 、 ± 1 、 ± 2... sin\theta_k = k \frac{\lambda}{d} k = 0、±1、±2... sinθk=kdλk=0±1±2...
Z m , k = m λ 1 − 1 − ( s i n θ k ) 2 Z_{m,k} = m \frac{\lambda}{1-\sqrt{1-(sin\theta_k)^2}} Zm,k=m11(sinθk)2 λ
考虑傍轴小角近似
c o s θ k = 1 − 1 2 θ k 2 = 1 − 1 2 ( k λ d ) 2 cos\theta_k = 1-\frac{1}{2} \theta_k^2 = 1-\frac{1}{2}(\frac{k\lambda}{d})^2 cosθk=121θk2=121(d)2
最后得
Z m , k ≈ m 2 d 2 k 2 λ ,离散效应 w a l k − o f f Z_{m,k}≈ m\frac{2d^2}{k^2\lambda},离散效应walk -off Zm,kmk2λ2d2,离散效应walkoff
(5) 离散表
k=±1,Zm = m (2d2 /λ)
k =±2,Zm = m (d2 /2λ)

可见,在Z1 = 2d^2/λ处,有k = 0、±1、±2… 等5列平面波叠加子重复。

多光束干涉/衍射光栅/干涉射电望远镜/激光锁模技术·超短脉冲

多光束干涉长的共同特点
雷达天线一般是天线列阵,-------干涉射电望远镜,用于接受多光束干涉场信息。

可用矢量图解法解释,显示半角宽度 △θ∝1/N 关系,参与相干叠加的主极强越多,主极强一定变得锐利。
△δ----△θ关系
相邻相位差
δ = 2 π λ d s i n θ \delta = \frac{2\pi}{\lambda} d sin\theta δ=λ2πdsinθ

Δ δ = 2 π λ d c o s θ Δ θ \Delta \delta = \frac{2\pi}{\lambda} d cos\theta \Delta\theta Δδ=λ2πdcosθΔθ
令 N△δ = 2π ,矢量图闭合“零点”,即
2 π λ N d c o s θ k Δ θ = 2 π \frac{2\pi}{\lambda}Nd cos\theta_k \Delta\theta = 2\pi λ2πNdcosθkΔθ=2π
于是半角宽度
Δ θ = λ N d c o s θ k \Delta\theta =\frac{\lambda}{Ndcos\theta_k} Δθ=Ndcosθkλ
Nd 就是整个射电望远镜阵列的距离
在这里插入图片描述
大量全同单元之间的干涉产生了空间脉冲,其方位θk满足 dsinθk = k λ,其锐度(半角宽度)△θk 决定于 △θk = λ/D,则如何产生时间脉冲呢?
空间脉冲的产生由于光栅上的次级扰动的叠加。

光栅中相位差是依次延迟的,且等振幅,则有
A ( δ ) = a 0 ( s i n ( N δ / 2 ) s i n ( δ / 2 ) ) 矢量图解法与复数解法均获得此结果 A(\delta) = a_0 (\frac{sin(N\delta/2)}{sin(\delta/2)}) 矢量图解法与复数解法均获得此结果 A(δ)=a0(sin(δ/2)sin(Nδ/2))矢量图解法与复数解法均获得此结果
于是,当 δ=2πk时,有极大,Amax =N a0;
当δ = 2π(K+1/N)时,有邻近极小,Amin = 0
峰值的半角宽度△δ = 2π/N,N越大,△δ 越小,单元越多,脉冲越窄

当相位差是空域中的变量,则会出现空间脉冲,衍射光栅就是如此
当相位差是时域中的变量,则会出现时间脉冲。
时域的脉冲宽度、间隔
为了满足 δ(t) =γt,则有
u ( t ) = Σ i = 1 N a 0 c o s ( ω t + ( i − 1 ) γ t ) = a 0 s i n ( N γ 2 t ) s i n ( γ 2 t ) c o s ( ω t + ϕ ( t ) ) u(t) = \Sigma_{i=1}^N a_0 cos(\omega t +(i-1)\gamma t) = a_0 \frac{sin(N\frac{\gamma}{2}t)}{sin(\frac{\gamma}{2}t)} cos(\omega t +\phi (t) ) u(t)=Σi=1Na0cos(ωt+(i1)γt)=a0sin(2γt)sin(N2γt)cos(ωt+ϕ(t))
用电子信息科学的语言描述
ω -----本机频率或者 本底频率
γ ------差频,相邻频率之差
(sin(Nγt/2))/(sin(γt/2))---------调幅因子,这是脉冲型的调制因子。
总之,一系列频差依次为一常数的不同频率的振动之合成,将出现周期性的脉冲信号,其脉冲时刻tk、脉冲宽度△t和脉冲间隔τ如上所述,将成反比形式
Δ t ( N γ ) = 2 π , T γ = 2 π \Delta t(N\gamma) =2\pi, T\gamma = 2\pi Δt(Nγ)=2π,Tγ=2π

锁模技术:旨在不同纵模振荡之间实现相位锁住。
具体措置之一:在激光谐振腔内植入适当的损耗调制元件,如声光调制元件或电光调制元件,使调制频率 v’ 恰好等于纵模间隔 △v。于是经调制后的纵模vk 振荡便派生出了侧频(vk+△v)和(vk-△v),正好落在量测相邻纵模vk+1,vk-1上。这意味着通过如此调制之后的这一系列纵模之间相位开始锁定起来了。


参考内容

1、http://www.icourses.cn/sCourse/course_3571.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B叔最强哦

一起学习,一起加油

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值