课程4 波动光学引论(三) (衍射引论)(视频P9-P14)

光波衍射引论

光波衍射及其特点

衍射现象
衍射现象
菲涅尔衍射:近场衍射
夫琅禾费衍射:远场衍射
当 衍射方孔慢慢变小或距离不断拉大,从菲涅尔衍射过渡到 夫琅禾费衍射。

激光束经狭缝(可调)的衍射图样,表现出光波的传播行为 具有如下特点:
(1) 限制与拓展 ---------- △θ 衍射发散角
(2) 缝宽与波长 ----------- 敏感因素 缝宽ρ越小,△θ 越大;波长λ越大,△θ 越大;
(3) 实验上 ρ ·△θ = λ(可方便推导记忆)

衍射程度被 粗分为 三个等级
(1) ρ>1000 λ ,衍射现象不明显,近乎几何光学直线传播,但边缘衍射效应仍不可忽略;
(2) 1000λ > ρ > λ, 衍射现象显著,出现衍射花样。
(3) ρ <= λ, 衍射现象过于明显,向散射过渡。

“微结构” 等价于 “衍射图样”,衍射结构分析学,通过衍射图像推测微结构。

惠更斯–菲涅尔原理

原理表述:场点的扰动 U(p) 可视为,波前上所有次波源所贡献的次级扰动的相干叠加-------- 次波相干叠加原理
利用波前上各次波源的扰动叠加来描述该点扰动,总扰动:
U ( p ) = Σ Δ U i ( p ) = ∫  ⁣ ⁣ ⁣ ∫ Σ   d U ( p ) \textbf U(p) = \Sigma \Delta \textbf U_i(p) = \int \!\!\! \int_\Sigma \,d{\textbf U(p)} U(p)=ΣΔUi(p)=ΣdU(p)

菲涅尔–基尔霍夫衍射积分

基于物理上的若干基本考虑,初步构造衍射积分公式:
Δ U ( p ) ∝ Δ S \Delta \textbf U(p) ∝ \Delta S ΔU(p)ΔS
Δ U ( p ) ∝ U 0 ( Q ) 或 U 0 ( Q ) = a 1 R e i k R \Delta \textbf U(p) ∝ \textbf U_0(Q) 或 \textbf U_0(Q) = \frac{a_1}{R} e^{ikR} ΔU(p)U0(Q)U0(Q)=Ra1eikR
Δ U ( p ) ∝ 1 r e i k r \Delta \textbf U(p) ∝ \frac{1}{r} e^{ikr} ΔU(p)r1eikr
Δ U ( p ) ∝ f ( θ , θ 0 ) , 倾斜因子,方向因子 \Delta \textbf U(p) ∝ f(\theta,\theta_0) , 倾斜因子,方向因子 ΔU(p)f(θ,θ0),倾斜因子,方向因子
方向因子
于是 得到菲涅尔衍射积分公式
U ( p ) = K ∫  ⁣ ⁣ ⁣ ∫ Σ   f ( θ , θ 0 ) ⋅ U 0 ( Q ) e i k r r d S \textbf U(p) = K \int \!\!\! \int_\Sigma \,f(\theta,\theta_0) · \textbf U_0(Q) \frac{e^{ikr}}{r} dS U(p)=KΣf(θ,θ0)U0(Q)reikrdS

六十年后,基尔霍夫:根据定态波 亥姆霍兹方程-----应用格林公式--------在kr >>1 近似下退出 无源空间边值定解 的积分表达式。与菲涅尔积分公式比较,其主体部分一致。

基尔霍夫的新贡献是:
(1) 明确了方向因子
f ( θ , θ 0 ) = 1 2 ( c o s θ 0 + c o s θ ) f(\theta,\theta_0) = \frac {1}{2}(cos\theta_0 + cos\theta) f(θ,θ0)=21(cosθ0+cosθ)
(2) 给出了比例系数 K
K = − i λ K = \frac {-i}{\lambda} K=λi
(3) 指出了波前面并不限于等相面

于是 基尔霍夫衍射积分可写为
U ( p ) = − i λ ∫  ⁣ ⁣ ⁣ ∫ Σ   1 2 ( c o s θ 0 + c o s θ ) ⋅ U 0 ( Q ) e i k r r d S \textbf U(p) = \frac{-i}{\lambda} \int \!\!\! \int_\Sigma \,\frac{1}{2}(cos\theta_0 + cos\theta) · \textbf U_0(Q) \frac{e^{ikr}}{r} dS U(p)=λiΣ21(cosθ0+cosθ)U0(Q)reikrdS

基尔霍夫边界条件(假设)
基尔霍夫边界条件与傍轴衍射积分公式

衍射系统&分类

衍射的分类
前场—照明空间-----------照明波一般比较简单;
后场—衍射空间-----------衍射波一般复杂。
理论目标是
U 0 ( x 0 , y 0 ) → U ( x , y ) \textbf U_0(x_0,y_0) → \textbf U(x,y) U0(x0,y0)U(x,y)
菲涅尔衍射:球面波照明,有限远接收。源或接收面之一与衍射屏的距离为有限远。
夫琅禾费衍射:平面波照明,无限远接收。源与接收面均为无穷远。

衍射巴俾涅原理

巴俾涅原理:反映互补平的两个衍射场之间的关系。

衍射积分公式中,积分区间(光孔)
U a ( p ) + U b ( p ) = U 0 ( p ) \textbf U_a(p) + \textbf U_b(p) = \textbf U_0(p) Ua(p)+Ub(p)=U0(p)
一旦求得 Ua场,则互补屏的衍射场即可通过自由场减去Ua得到。

圆孔、圆屏菲涅尔衍射

衍射图样
光波长 λ 600nm, 衍射现象显著。 当 ρ mm量级,R 、b m量级 1m-10m ,衍射图样,轴对称 ---------同心衍射环。
轴上光强 I(p0)的变化特点:
b不变,ρ变大, I(p0)周期性变化,反应敏感;
ρ不变,b变大, I(p0)周期性变化,反应迟钝;
当 b 很大(远场)时,I(p0)下降,无起伏。

圆孔、圆屏衍射一致 泊松亮斑。

半波带分割波前

------- 对波前次波源群一种特殊的编组方式
半波带法示意图
每个环带的面积依次编号 与 对观察点p0贡献的次波 定义,则总扰动
U ( p 0 ) = Σ Δ U k \textbf U(p_0) = \Sigma \Delta \textbf U_k U(p0)=ΣΔUk

相位关系的分析
考虑到各半波带(次波源)到 p0点的波程递增 λ/2,相邻半波带在 p0激发的扰动其相位差 π,设
Δ U 1 = A 1 \Delta U_1 = A_1 ΔU1=A1

Δ U 2 = − A 2 , Δ U 3 = A 3 . . . Δ U k = ( − 1 ) k + 1 A k \Delta U_2 = -A_2, \Delta U_3 = A_3... \Delta U_k = (-1)^{k + 1} A_k ΔU2=A2,ΔU3=A3...ΔUk=(1)k+1Ak
于是
U ( p 0 ) = A 1 − A 2 + A 3 − . . . + ( − 1 ) k + 1 A k + . . . . \textbf U(p_0) = A_1 -A_2 + A_3 - ... + (-1)^{k + 1} A_k + .... U(p0)=A1A2+A3...+(1)k+1Ak+....
振幅关系的分析,
A k ∝ f ( θ k ) ⋅ Δ Σ k r k ; f ( θ k ) = 1 2 ( 1 + c o s θ k ) A_k ∝ f(\theta_k) · \frac{\Delta \Sigma_k}{r_k}; f(\theta_k) = \frac{1}{2}(1+cos\theta_k) Akf(θk)rkΔΣk;f(θk)=21(1+cosθk)
由球帽面积积分 → 环带面积
在这里插入图片描述
圆孔情况,漏出k 个半波带
若k 为偶数时,根据 U(p0)公式可得 I(p0)≈0,中心为 暗斑;
若k 为奇数时,根据 U(p0)公式可得U(p0)=2A0, I(p0)≈4A02=4I0,中心为 亮斑,其光强4倍强于自由光强。“局部效应大于整体效应”。

半波带方程

半波带方程

细致的矢量图解

螺旋线矢量图解
非整数个半波带叠加结果是 首位矢量叠加后的方向矢量。

圆屏衍射 圆孔衍射 结合巴俾涅原理即可解释 泊松亮斑情况。

可见 圆屏场,起点总在螺旋线上,而端点始终指向螺旋中心,随着圆屏半径增加,该矢量长度缓慢收缩。当ρ不太大时, Ad = A0。光强 I(p0)= I0(p0),泊松班。
该原理派生 无透镜成像技术。(用于强光源摄像场合)无景深限制,无波段限制。
像清晰度--------球面光洁度、精度------与半波带的宽度相等。

菲涅尔波带片

波带片的制作

ρ = k ρ 1 \rho = \sqrt{k} \rho_1 ρ=k ρ1
遮挡偶数个半波带,只露出奇数个半波带。
轴上相应点的衍射光强:
A ( p 0 ) = A 1 A 3 + A 5 + . . . . . A(p_0) = A_1 A_3 + A_5 + ..... A(p0)=A1A3+A5+.....
将会高度的聚焦。
该聚焦会存在若干个焦点。主焦点与次焦点 可利用透镜成像来验证。

理论公式可导出
f 1 = ρ 1 2 λ f _1 =\frac{\rho_1^2} {\lambda} f1=λρ12

波带片聚光-----类透镜物像公式
记得圆孔衍射反映(R,b,K,ρ)的关系
1 R + 1 b = K λ ρ 2 \frac{1}{R} + \frac{1}{b} = K \frac{\lambda}{\rho^2} R1+b1=Kρ2λ
聚焦位置b1,当满足 K =1 时,
1 R + 1 b = λ ρ 2 ; − − − − − − − − − b 1 “像距” \frac{1}{R} + \frac{1}{b} = \frac{\lambda}{\rho^2}; --------- b_1 “像距” R1+b1=ρ2λ;b1像距
当平行光照明时,令R →∞,此时求得 b1,也就是焦距 f1:
f 1 = ρ 2 λ f_1 = \frac{\rho^2}{\lambda} f1=λρ2
于是,上式可以改写为
1 R + 1 b 1 = 1 λ \frac{1}{R} + \frac{1}{b_1} = \frac{1}{\lambda} R1+b11=λ1
当K为奇数时,可或得对应像点。

作为集光元件,菲涅尔波带片具有如下优点:
优点:轻便、可制作大面积、可补偿玻璃透镜的色差。
用途:用于长程刚通信、宇航领域。

开创了 有意改造波前,以控制后场分布而满足各种实际需求。

新型菲涅尔波带片:
(1) 全透明相位型(浮雕型)波带片
利用压膜相移技术,从而有效利用半波带只利用一半的情况,增加光通量;
(2) 正弦型波带片
仅保留±1级 焦点。
通过“平面波与球面波的干涉”而制作成的。其聚焦性能更加优越。

单缝、矩孔的夫琅禾费衍射

单缝夫琅禾费衍射
单缝 宽度 和长度要求
Δ x 0 = a < < Δ y 0 = b \Delta x_0 = a << \Delta y_0 = b Δx0=a<<Δy0=b
此时衍射场显著地沿x方向拓展。

单缝衍射系 一维衍射

AB之间的相位差与AB弧长
可求得
A ( θ ) = A 0 s i n α 2 α 2 , A(\theta) = A_0 \frac{sin \frac{\alpha}{2}} {\frac{\alpha}{2}}, A(θ)=A02αsin2α,
引入宗量
α = σ 2 = π a s i n θ λ \alpha = \frac{\sigma}{2} = \frac{\pi a sin\theta }{\lambda} α=2σ=λπasinθ
可改写为
A ( θ ) = A 0 s i n α α , I ( θ ) = I 0 ( s i n α α ) 2 A(\theta) = A_0 \frac{sin\alpha}{\alpha}, I(\theta) = I_0 (\frac{sin\alpha}{\alpha})^2 A(θ)=A0αsinα,I(θ)=I0(αsinα)2
其衍射函数为 sinc函数图样,零级衍射峰即为 几何光学像点。
sinc函数图样
零级斑的半角宽度,大约80%以上。
次极大与半角宽度

几何光学相当于 半角宽度区域0,只存在零级斑。 几何光学是 波动光学趋于0的一个极限状态。

傍轴衍射积分公式

U ( p ) = − i λ r 0 ∫ ∫ Σ 0 U 0 ( Q ) e i k r   d S \textbf U(p) = \frac{-i}{\lambda r_0} \int \int_{\Sigma_0} \textbf U_0(Q) e^{ikr}\,dS U(p)=λr0iΣ0U0(Q)eikrdS

结合目前 ~~
源点 Q(x0),有
d S = b d x 0 , U 0 ( Q ) = A , 系数 1 r 0 → 1 f ( 经过透镜变换 ) dS = b dx_0, \textbf U_0(Q) = A, 系数 \frac{1}{r_0} → \frac{1}{f} (经过透镜变换) dS=bdx0,U0(Q)=A,系数r01f1(经过透镜变换)
重点在处理相因子 eikr :
k r → k 0 L = k 0 ( L − L 0 ) + k 0 L 0 = − k 0 n x 0 s i n θ + k 0 L 0 = − k 0 x 0 s i n θ + k 0 L 0 kr → k_0 L = k_0(L-L_0)+k_0 L_0 = -k_0 n x_0 sin\theta + k_0 L_0 = -k_0 x_0 sin\theta + k_0 L_0 krk0L=k0(LL0)+k0L0=k0nx0sinθ+k0L0=k0x0sinθ+k0L0

将光程的计算转化为相对光程差的计算--------- 引入一个参考光程L0(OP)
U ( θ ) = − i λ f A b e i k 0 L 0 ∫ − a 2 a 2 e − i k s i n θ ⋅ x 0   d x 0 \textbf U(\theta) = \frac{-i}{\lambda f} A b e^{i k_0 L_0} \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-i k sin\theta · x_0} \,dx _0 U(θ)=λfiAbeik0L02a2aeiksinθx0dx0
积分结果:
∫ − a 2 a 2 e − i k s i n θ ⋅ x 0   d x 0 = a s i n α α , α = π a s i n θ λ \int_{-\frac{a}{2}}^{\frac{a}{2}} e^{-i k sin\theta · x_0} \,dx _0 = a \frac{sin\alpha}{\alpha}, \alpha = \frac{\pi a sin\theta}{\lambda} 2a2aeiksinθx0dx0=aαsinα,α=λπasinθ
最后写成:
U ( θ ) = C e i k 0 L 0 s i n α α \textbf U(\theta) = \textbf C e^{i k_0 L_0} \frac{sin\alpha}{\alpha} U(θ)=Ceik0L0αsinα
I ( θ ) = U U ∗ = I 0 ( s i n α α ) 2 I(\theta) = \textbf U \textbf U^* = I_0 (\frac{sin\alpha}{\alpha})^2 I(θ)=UU=I0(αsinα)2
C = − i λ f A ( a b ) , I 0 = ∣ C ∣ 2 = ( a b ) 2 ( λ f ) 2 A 2 \textbf C = \frac{-i}{\lambda f} A(ab), I_0 = |\textbf C|^2 = \frac{(ab)^2}{(\lambda f)^2} A^2 C=λfiA(ab),I0=C2=(λf)2(ab)2A2

矩孔夫琅禾费衍射

矩孔= 两个垂直单狭缝的 相叠
矩孔夫琅禾费衍射
从单缝、矩孔夫琅禾费衍射推理 三角孔夫琅禾费衍射

圆孔夫琅禾费衍射

衍射图样--------轴对称性,同心衍射
圆孔夫琅禾费衍射 中心是一个爱里斑。不管光孔大小,中心爱里斑始终是一个亮点。
衍射积分最终结果
U ( θ ) ∝ 2 J 1 ( x ) x \textbf U(\theta) ∝ 2\frac{J_1(x)}{x} U(θ)2xJ1(x)
I ( θ ) = I 0 ( 2 J 1 ( x ) x ) 2 I(\theta) = I_0 (\frac{2J_1(x)}{x})^2 I(θ)=I0(x2J1(x))2
宗量
x = 2 π a s i n θ λ x = \frac{2\pi a sin\theta}{\lambda} x=λ2πasinθ
参量
I 0 = ( π a 2 ) 2 ( λ f ) 2 A 2 I_0 = \frac{(\pi a^2)^2}{(\lambda f)^2} A^2 I0=(λf)2(πa2)2A2
函数 J1 一阶bessel 函数------------一种特殊函数
J1 函数有一系列的零点 x0 = 1.22π
第一个暗环的角方位 θ10 满足
π D s i n θ 10 λ = 1.22 π , Δ θ ≈ s i n θ 10 = 1.22 λ D \frac{\pi D sin\theta_{10}}{\lambda} = 1.22 \pi, \Delta \theta ≈ sin\theta_{10} = 1.22 \frac{\lambda}{D} λπDsinθ10=1.22π,Δθsinθ10=1.22Dλ
圆孔衍射发散角
爱里斑直接决定像方分辨本领。

透镜的功能是限制波前 再聚焦波前。故一定会有爱里斑

瑞利判据
人眼瞳孔直径2mm ~ 8mm
人眼最小分辨角
δ θ e = 1.22 λ D e ≈ 1.22 550 n m 2 m m ≈ 1 ′ \delta \theta_e = 1.22 \frac{\lambda}{D_e} ≈ 1.22 \frac{550nm}{2mm} ≈ 1' δθe=1.22Deλ1.222mm550nm1

注意 生理光学这一数据 对于 助视光学、影视技术、图像识别的设计与技术性能指标均必须尊重的基本数据。

望远镜 物镜 大口径 长焦距
望远镜系统
望远镜系统中 大口径物镜是整个系统中的孔径光阑,直接决定最小可分辨角。
望远镜的角放大率
M = f D f e M = \frac{f_D}{f_e} M=fefD
放大率可独立设计,但是受限于衍射的最小分辨率,合理的设计方案是 δθm 通过M 转为为 人眼分辨率δθe 。即有效放大率
M e f = δ θ e δ θ m = D 0 D e M_{ef} = \frac{\delta \theta_e}{\delta \theta_m} = \frac{D_0}{D_e} Mef=δθmδθe=DeD0
在这里插入图片描述
Tip: LAMOST 郭守敬望远镜 :大口径(4米)兼大视场(5度),4000根光纤组成的 大天区面积多目标光纤光谱天文望远镜

显微镜
物镜 小孔径 短焦距 系孔径光阑,观察近处 细小样品,故关注 可分比你的最小线度 ,有公式
δ y m = 0.61 λ n 0 s i n u 0 \delta y_m = 0.61 \frac{\lambda}{n_0 sinu_0} δym=0.61n0sinu0λ
讨论:
(1) 提高 N.A, 广角,油浸 但有限 N.A.最大接近1.5,取N.A. = 1.2 ,则 δYm ≈ λ/2。即 传统光学显微镜分辨率的极限。
(2) 选择短波长光源来照明。
(3) 光学显微镜的 有效放大率 δYm 接近于 δYe。

象记录介质
布满规则排列的感光单元。
其空间分辨率为 N (线/mm),
要求 光学系统的分辨率能被充分吕勇,即 系统象方 δYm‘ 与记录介质N相匹配。
N > = 1 δ y m ′ N>= \frac{1}{\delta y_m'} N>=δym1


参考内容

http://www.icourses.cn/sCourse/course_3571.html
https://wenku.baidu.com/view/280ca23943323968001c9207.html?fr=aladdin664466&ind=1&aigcsid=39662&qtype=0&lcid=1&queryKey=%E7%8E%B0%E4%BB%A3%E5%85%89%E5%AD%A6%E5%9F%BA%E7%A1%80&wkts=1708349418827&bdQuery=%E7%8E%B0%E4%BB%A3%E5%85%89%E5%AD%A6%E5%9F%BA%E7%A1%80

  • 20
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B叔最强哦

一起学习,一起加油

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值