课程11 傅里叶变换光学与相因子分析方法(P38-43)

傅里叶变换光学

翻译问题 傅里叶光学、傅立叶光学

经典波动光学→现代变换光学→光学信息处理

傅里叶光学又可分支为四类:傅里叶光谱仪、空间滤波与信号处理、象质评价与传递函数、全息术原理;衍射的应用中的衍射分光、衍射分析结构、衍射成像、衍射波前再现。其中傅里叶光谱仪与衍射分光对应,空间滤波与信号处理、象质评价与传递函数与衍射成像对应,全息术原理与衍射波前再现对应。

衍射系统 波前变换

衍射系统的划分
入射衍射屏的波前U1(x,y)、出射衍射屏的波前U2(x,y)、接收屏的波前U(x’,y’)

波前变换的概念
波前 U1(x,y)→U2(x,y),这是衍射屏的作用;
波前U2(x,y)→U(x’,y’),这是波的传播行为;

常见傍轴情形:
U ( x ′ , y ′ ) ≈ − i λ r 0 ∫ ∫ U 2 ( x , y ) e i k r   d x d y \textbf U(x',y') ≈ \frac{-i}{\lambda r_0} \int \int \textbf U_2(x,y) e^{ikr} \, dxdy U(x,y)λr0i∫∫U2(x,y)eikrdxdy

衍射屏函数
定义
t ( x , y ) = U 2 ( x , y ) U 1 ( x , y ) = t ( x , y ) e i ϕ ( x , y ) \textbf t(x,y) =\frac{\textbf U_2(x,y)}{\textbf U_1(x,y)} = t(x,y) e^{i \phi(x,y)} t(x,y)=U1(x,y)U2(x,y)=t(x,y)eiϕ(x,y)
唯象看,该函数具备三种类型
振幅型-------仅t(x,y),而 φ与x、y无关----------透镜棱镜
相位型-------仅φ(x,y),而t 与x、y无关----------高度透明的样品、凝聚态二维晶片、高度透明的光纤等
相幅型-------有t(x,y)与φ(x,y),一般情况
于是,衍射场
U ( x ′ , y ′ ) ≈ − i λ r 0 ∫ ∫ t ( x , y ) U 1 ( x , y ) e i k r   d x d y ≠ − i λ r 0 ∫ ∫ U 1 ( x , y ) e i k r   d x d y \textbf U(x',y') ≈ \frac{-i}{\lambda r_0} \int \int \textbf t(x,y) \textbf U_1(x,y) e^{ikr} \, dxdy ≠\frac{-i}{\lambda r_0} \int \int \textbf U_1(x,y) e^{ikr} \, dxdy U(x,y)λr0i∫∫t(x,y)U1(x,y)eikrdxdy=λr0i∫∫U1(x,y)eikrdxdy
− i λ r 0 ∫ ∫ t ( x , y ) U 1 ( x , y ) e i k r   d x d y 为自由传播场 \frac{-i}{\lambda r_0} \int \int \textbf t(x,y) \textbf U_1(x,y) e^{ikr} \, dxdy 为自由传播场 λr0i∫∫t(x,y)U1(x,y)eikrdxdy为自由传播场
形成了对波衍射的普遍表述:当光波在传播中,由于某种因素,使其波前振幅分布或相位分布发生变化,则其后场不同于自由传播场-----发生了衍射。这是对衍射现象因果关系的普遍概括。

两个衍射屏相叠,其屏函数是相乘而非相加,即波前经过了两次变换

相位衍射元件-------------透镜与棱镜

透镜和棱镜
以纯波动光学的眼光来看,透镜和棱镜相当于一个衍射屏,入射光经过该元件,波前发生变换。对应该元件也有衍射屏函数。
在成像系统重,透镜有两个作用:(1) 限制波前;(2) 变换波前--------改变聚散中心。
统一地,有其屏函数加以描述:
t ( x , y ) = A 2 ( x , y ) e i ϕ 2 ( x , y ) A 1 ( x , y ) e i ϕ 1 ( x , y ) ,瞳内; t ( x , y ) = 0 ,瞳外; \textbf t(x,y) = \frac{A_2(x,y)e^{i \phi_2(x,y)}}{A_1(x,y)e^{i \phi_1(x,y)}},瞳内;\textbf t(x,y) =0,瞳外; t(x,y)=A1(x,y)eiϕ1(x,y)A2(x,y)eiϕ2(x,y),瞳内;t(x,y)=0,瞳外;
这里应用了许多近似条件-------------忽略了反射、吸收、损耗,即 A2/A1 = 1
于是,瞳内纯相位型屏函数可以表示成如下形式:
t L ( x , y ) ≈ e i ( ϕ 2 ( x , y ) − ϕ 1 ( x , y ) ) \textbf t_L(x,y) ≈ e^{i(\phi_2(x,y)-\phi_1(x,y))} tL(x,y)ei(ϕ2(x,y)ϕ1(x,y))
透镜参量
透镜曲率半径r1、r2,折射率n,轴上厚度d0,可以看到离轴情况下,随着离轴越来越远,与轴上入射光的光程差越大。
此时考虑傍轴、薄透镜情况,即d0 = 0。有入射点p(x,y),出射点Q(x,y)。坐标相近,等高出射;L(PQ)可近似沿平行光轴计算:
L ( P , Q ) = Δ 1 ( x , y ) + n d ( x , y ) + Δ 2 ( x , y ) L(P,Q) = \Delta_1(x,y) + nd(x,y) + \Delta_2(x,y) L(P,Q)=Δ1(x,y)+nd(x,y)+Δ2(x,y)
其中,根据曲率半径可知
Δ 1 ( x , y ) = x 2 + y 2 2 r 1 , Δ 2 ( x , y ) = x 2 + y 2 − 2 r 2 , n d = n ( d 0 − Δ 1 − Δ 2 ) \Delta_1(x,y) = \frac{x^2+y^2}{2r_1},\Delta_2(x,y) = \frac{x^2+y^2}{-2r_2},nd = n(d_0 - \Delta_1 - \Delta_2) Δ1(x,y)=2r1x2+y2Δ2(x,y)=2r2x2+y2,nd=n(d0Δ1Δ2)
于是
L ( x , y ) = n d 0 − ( n − 1 ) ( Δ 1 + Δ 2 ) L(x,y) = nd_0- (n-1)(\Delta_1 + \Delta_2) L(x,y)=nd0(n1)(Δ1+Δ2)
带入相位变化函数可得
ϕ 2 ( x , y ) − ϕ 1 ( x , y ) = k L ( x , y ) = ϕ 0 − k ( n − 1 ) ( Δ 1 + Δ 2 ) = − k ( n − 1 ) x 2 + y 2 2 ( 1 r 1 − 1 r 2 ) \phi_2(x,y) - \phi_1(x,y) = k L(x,y) = \phi_0 - k(n-1)(\Delta_1 + \Delta_2) = -k(n-1) \frac{x^2+y^2}{2}(\frac{1}{r_1}-\frac{1}{r_2}) ϕ2(x,y)ϕ1(x,y)=kL(x,y)=ϕ0k(n1)(Δ1+Δ2)=k(n1)2x2+y2(r11r21)
其中 φ0 =k n d0,与(x,y)无关
最后,薄透镜-------------作为相位元件,其相位屏函数为
t L = e − i k x 2 + y 2 2 F , F = 1 ( n − 1 ) ( 1 r 1 − 1 r 2 ) \textbf t_L = e^{-ik \frac{x^2+y^2}{2F}},F = \frac{1}{(n-1)(\frac{1}{r_1}-\frac{1}{r_2})} tL=eik2Fx2+y2,F=(n1)(r11r21)1
可见:
(1) 薄透镜的相位变换函数具有二次相位因子。
(2)在理论分析时,若存在二次相因子的变换函数,则其作用等效于一个薄透镜-----------对被作用的波前起聚散作用。
例题
这是傍轴球面波---------聚焦中心(0,0,F),即 焦距为
F = ( ( n − 1 ) ( 1 r 1 − 1 r 2 ) ) − 1 F =((n-1)(\frac{1}{r_1}-\frac{1}{r_2}))^{-1} F=((n1)(r11r21))1
可正可负,F>0,则为会聚透镜;F<0,则为发散透镜;------------该公式为磨镜者公式。

试用透镜屏函数公式导出傍轴物像距成像公式
发散球面波入射
U 1 ( x , y ) = A 1 e i k ( x 2 + y 2 2 S ) \textbf U_1(x,y) = A_1 e^{ik(\frac{x^2+y^2}{2S})} U1(x,y)=A1eik(2Sx2+y2)
出射波为
U 2 ( x , y ) = t L U 1 = A 1 e − i k ( x 2 + y 2 2 F ) e i k ( x 2 + y 2 2 S ) = A 1 e − i k ( x 2 + y 2 2 S ′ ) \textbf U_2(x,y) = \textbf t_L \textbf U_1 = A_1 e^{-ik(\frac{x^2+y^2}{2F})} e^{ik(\frac{x^2+y^2}{2S})} = A_1 e^{-ik(\frac{x^2+y^2}{2S'})} U2(x,y)=tLU1=A1eik(2Fx2+y2)eik(2Sx2+y2)=A1eik(2Sx2+y2)
其中缩写
1 S ′ = 1 F − 1 S \frac{1}{S'}=\frac{1}{F}-\frac{1}{S} S1=F1S1
U2表达式表明,它代表一列会聚球面波,聚散中心在(0,0,S’),故S‘ 具有像距的意义
即上述缩写为薄透镜傍轴成像得到物像距关系公式-----------高斯公式

透镜对高斯光束的变换
高斯光束经过透镜变换后的推导
棱镜的相位变换函数tp棱镜的相位变换
在光学系统中,棱镜的偏转作用------------改变光束的传播方向。可以预测其相位变换函数 tp具有线性相因子。
结果为
(1) tp(x,y) = e(-ik(n-1)αx) ,特殊
(2) tp(x,y) = e(-ik(n-1)(α1x+α2y)) ,其中 (α1,α2)是界面发现方向N的两个方向余弦角的余角。
可见,若在某种场合出现具有线性相因子的变换函数,则其作用等效于一个棱镜-----------偏转元件。
棱镜例题
出射波前
U 2 ( x , y ) = t p U 1 = A 1 e − i k ( n − 1 ) α x e i k x 2 + y 2 2 S = A 1 e i k ( x 2 + y 2 2 S − ( n − 1 ) S α x S ) \textbf U_2(x,y) = \textbf t_p \textbf U_1 = A_1 e^{-ik(n-1)\alpha x} e^{ik\frac{x^2+y^2}{2S}} = A_1 e^{ik(\frac{x^2+y^2}{2S}-\frac{(n-1)S\alpha x}{S})} U2(x,y)=tpU1=A1eik(n1)αxeik2Sx2+y2=A1eik(2Sx2+y2S(n1)Sαx)
这表明它是一列轴外发散球面波,其中心位置Q’,坐标为 x‘ = (n-1)αS,y‘= 0 ,z’ = S,显然,这种处理方式较之几何光学方法,要简单得多。

波前相因子分析法 余弦光栅的衍射场

要熟悉两类相因子
(1) 波前函数的相因子:平面波前与球面波前-------系可供选择的基元成分。
(2) 变换函数的想因子:透镜与棱镜----------系两种基本的变换元件。
相因子判断法大意:
根据波前相因子来判断由此波前所决定的波长的类型与特征;
根据变换相因子来判断此变换函数的主要功能,它等效于一种什么光学元件。

上一节几个实例已经体现该方法的基本思想、分析程序与其优越性。不过需注意
(1)掌握波场的主要特征,不及细节;
(2) 某些场合,例如全息再现场合,主要特征------解决问题。

空间频率的概念
时间频率与空间频率
二维周期结构,空间频率有两个
(1) 二维性 空间周期(dx,dy),空间频率(fx,fy) = (1/dx,1/dy)
(2) 有正负,取向一三象限,fy/fx <0; 取向二四象限,fy/fx>0。
余弦光栅的定义:复振幅透过率函数----------屏函数具有如下形式
t ( x , y ) = t 0 + t 1 c o s ( 2 π f x + ϕ 0 ) \textbf t(x,y) = t_0 +t_1 cos(2\pi fx + \phi_0) t(x,y)=t0+t1cos(2πfx+ϕ0)
一般情况
t ( x , y ) = t 0 + t 1 c o s ( 2 π f x x + 2 π f y y + ϕ 0 ) \textbf t(x,y) = t_0 +t_1 cos(2\pi f_x x+ 2\pi f_y y +\phi_0) t(x,y)=t0+t1cos(2πfxx+2πfyy+ϕ0)
余弦光栅的制作---------------两束平行光干涉记录,线性洗印
余弦光栅制作
双光束干涉强度分布
I ( x , y ) = I 0 ( 1 + γ c o s ( 2 π f x + ϕ 0 ) ) , f = 1 d = s i n θ 1 + s i n θ 2 λ I(x,y) = I_0 (1+\gamma cos(2\pi fx + \phi_0)),f = \frac{1}{d} = \frac{sin\theta_1 + sin\theta_2}{\lambda} I(x,y)=I0(1+γcos(2πfx+ϕ0))f=d1=λsinθ1+sinθ2
暗室,线性洗印,以获得 t(x,y) ∝ I(x,y)
写成
t ( x , y ) = α + β I ( x , y ) = t 0 + t 1 c o s ( 2 π f x + ϕ 0 ) t(x,y) = \alpha + \beta I(x,y) = t_0 + t_1 cos(2\pi fx + \phi_0) t(x,y)=α+βI(x,y)=t0+t1cos(2πfx+ϕ0)
由光密度计 鉴测,其中 β >0,正片;β<0,负片。 α “雾底”

衍射特征
出现三个很鲜明的衍射斑。这表明,经正弦光栅,后场主要成分为三列平面衍射波。
理论说明------波长λ平行光正入射,其出射场为
U 2 ( x , y ) = t U 1 = ( t 0 + t 1 c o s ( 2 π f x ) ) A 1 = A 1 t 0 + 1 2 A 1 t 1 e i 2 π f x + 1 2 A 1 t 1 e − i 2 π f x = U 0 + U + 1 + U − 1 \textbf U_2(x,y) =\textbf t \textbf U_1= (t_0 + t_1 cos(2\pi fx))A_1 = A_1 t_0 + \frac{1}{2} A_1 t_1 e^{i 2\pi fx}+\frac{1}{2}A_1 t_1 e^{-i 2\pi fx} = \textbf U_0 + \textbf U_{+1} + \textbf U_{-1} U2(x,y)=tU1=(t0+t1cos(2πfx))A1=A1t0+21A1t1ei2πfx+21A1t1ei2πfx=U0+U+1+U1
其中 U0(x,y) = A1 t0--------正入射平面衍射波
U_+1(x,y) = 1/2 A1t1 ei2πfx = 1/2 A1 t1 eik(fλ)x…--------斜出射平面衍射波,其方向角满足 sin(θ_+1)= fλ;
U_-1(x,y) = 1/2 A1t1 e-i2πfx = 1/2 A1 t1 e-ik(fλ)x…--------又一列斜出射平面衍射波,其方向角满足 sin(θ_-1)= -fλ;
我们运用了相因子判断法,十分简洁地揭示了正弦光栅的衍射特征-------三个衍射斑。更具有意义的是衍射斑的光学特征反映了正弦光栅的结构等特征。
两个余弦衍射光栅组合,将出现9个衍射斑。

复合光栅的衍射屏
复合光栅怎么实现?一个频上包含了两种不同频率的透过率函数。实验上可通过两次曝光,第一次曝光后旋转平面镜角度,再二次曝光取出,即可包含该情况。
理论上,任何周期结构傅里叶级数分解都包含低频与高频,即可实现。
傅里叶级数展开可有三种形式可选用
(1)余弦正弦式
余弦正弦式

(2)余弦相移式
余弦相移式

(3)指数式
指数式展开

夫琅禾费衍射实现屏函数的傅里叶变换

从衍射学语言的角度来说 衍射屏、透镜、后焦面傅里叶面,对于信息学语言来描述而言是 物机构信息(二维复函数)、频谱分析器、频谱面。
凝聚成一个表述:夫琅禾费衍射实现了屏函数的傅里叶变换。衍射场点的位置与空间频率成分一一对应。
角方位(sinθ1、sinθ2) = (fx λ,fy λ) 线坐标(x’,y’) = (Fsinθ1、F sinθ2)=(F fx λ,F fy λ)
滤波是选频,要选频要先分频。夫琅禾费衍射就是选频的一个过程。直接导致了光学信息处理--------------空间滤波的概念。

超精细结构的衍射--------------隐失波

存在于近场衍射去的隐失波
载波-----平面衍射波 存在空间周期、波长、空间频率f0 = 1/λ
信息-----物结构,空间周期d ,空间频率 f =1/d
载波携带信息
s i n θ ± 1 = ± f λ sin\theta_{±1} = ± f\lambda sinθ±1=±fλ
注意 f 、f0 彼此独立,
分级 f<< f0 低频结构;f <= f0 高频结构; f> f0 超高频(超精细)结构
数量级 λ ~ 550nm ,即 f0 = 1/550nm = 1800 /mm
当f > f0时,有
s i n θ ± 1 = f λ = f / f 0 > 1 sin\theta_{±1} = f \lambda = f/f0 >1 sinθ±1=fλ=f/f0>1
转向 三维波场中去:
平面衍射波 U_+1(x,y,z) ∝ e^(i(kx x + ky y +kz z))^
为满足边界条件,即z =0时,被屏结构限定为 U_+1(x,y,z)∝ e^i2πf x^
于是 kx = 2πf , ky = 0, kz = ?
为满足波动方程,波矢k 值被限定, k = 2π/ λ = 2π f0
于是
k z = k 2 − k x 2 = 2 π f 0 2 − f 2 = 2 π f 0 1 − ( f f 0 ) 2 ,为虚数 k_z = \sqrt{k^2 - k_x^2} = 2\pi \sqrt{f_0^2 - f^2} = 2\pi f_0 \sqrt{1-(\frac{f}{f_0})^2},为虚数 kz=k2kx2 =2πf02f2 =2πf01(f0f)2 ,为虚数
最终导致
U + 1 ( x , y , z ) ∝ e − k z ′ z e i 2 π f x U_{+1}(x,y,z) ∝ e^{-k_z' z} e^{i 2\pi f x} U+1(x,y,z)ekzzei2πfx
这是一种非常波,是非传播波,无法到达远场。这就意味着,超高频的结构信息无法被平面衍射波携带到频谱面上,即衍射机构极限 fmax ≈ f0,或 dmin ≈ λ
显微镜非相干光最小可分辨极限 1/2λ,这里相干光用衍射携带频谱信息,最小极限是 λ
在这里插入图片描述
与超临界角产生的隐失波比较,它是一个传导波,在近场去又两列隐失波,U_+1 波沿 +x 方向;U_-1 波 沿-x方向;同时存在 U0波,它是通常的行波,可传输至远方。而近场光学显微镜对物结构信息的他呢方式从根本上突破了远场频谱的理论。

阿贝成像原理与空间滤波实验

相干成像系统-----------两种眼光看待
阿贝成像基本思路
阿贝成像基本思路:两步成像。一束光照射物面ABC,小物ABC可看成次波点集,经过成像透镜的夫琅禾费衍射,经过谱斑几种到频谱面3个谱斑,每个谱斑都是一个新的次波源,波及到整个像面。像就是3个谱斑所发射的新的次波的相干叠加。

准单色平行光照射物平面,其上各点成为次波源,发射球面波,充满系统。彼此是相干的--------------相干成像系统。
传统眼光:点点物像对应。
阿贝眼光:物是不同频率信息的叠加,第一次夫琅禾费衍射得到了频谱面上的谱斑。谱斑上新的次波源在像面上相干叠加,就得到一个像。它将物或像看成一系列不同空间频率信息的集合。成像过程被分为2步:
1、衍射-----入射光经过物发生夫琅禾费衍射,在后脚面上出现一系列谱斑,即物频谱。
2、干涉-----谱斑作为新的次波源,即物频谱作为新的波前,发生次波面到达像面,他们相干叠加而形成像。
其着眼于频谱及频谱的变换--------第一步分频,第二步合成。
阿贝原理的证明-------------三孔干涉场

证明:
设物光波前
U a b ( x , y ) = A 1 ( t 0 + t 1 c o s ( 2 π f x ) ) \textbf U_{ab}(x,y) = A_1 (t_0 + t_1 cos(2\pi f x)) Uab(x,y)=A1(t0+t1cos(2πfx))
它产生三个衍射斑 S0、S+1、S-1。被看做三个点源,在象面上相干叠加
U I ( x ′ , y ′ ) = U 0 ( x ′ , y ′ ) + U + 1 ( x ′ , y ′ ) + U − 1 ( x ′ , y ′ ) \textbf U_I(x',y') = \textbf U_0(x',y') + \textbf U_{+1}(x',y')+ \textbf U_{-1}(x',y') UI(x,y)=U0(x,y)+U+1(x,y)+U1(x,y)
其中
U 0 ( x ′ , y ′ ) = A 0 e i k x ′ 2 + y ′ 2 2 z e i k L ( S 0 B ′ ) , U + 1 ( x ′ , y ′ ) = A + 1 e i k x ′ 2 + y ′ 2 2 z − s i n θ + 1 ′ x ′ e i k L ( S + 1 B ′ ) , U − 1 ( x ′ , y ′ ) = A − 1 e i k x ′ 2 + y ′ 2 2 z − s i n θ − 1 ′ x ′ e i k L ( S − 1 B ′ ) \textbf U_0(x',y') = A_0 e^{ik \frac{x'^2+y'^2}{2z}} e^{ikL(S_0 B')},\textbf U_{+1}(x',y') = A_{+1} e^{ik \frac{x'^2+y'^2}{2z}-sin\theta_{+1}' x'} e^{ikL(S_{+1} B')},\textbf U_{-1}(x',y') = A_{-1} e^{ik \frac{x'^2+y'^2}{2z}-sin\theta_{-1}' x'} e^{ikL(S_{-1} B')} U0(x,y)=A0eik2zx′2+y′2eikL(S0B),U+1(x,y)=A+1eik2zx′2+y′2sinθ+1xeikL(S+1B),U1(x,y)=A1eik2zx′2+y′2sinθ1xeikL(S1B)其中
KaTeX parse error: Expected 'EOF', got '}' at position 28: …_0 e^[ikL(BS_0)}̲, A_{±1} ∝ \fra…
注意物像等光程性
L(BS0 B’) = L(B S+1 B’) =L(B S-1 B’)
三个次波源谱斑 相位是不等的
证明还需用到阿贝正弦条件。
于是
U I ( x ′ , y ′ ) ∝ e i k x ′ 2 + y ′ 2 2 z A 1 ( t 0 + t 1 2 e − i k s i n θ + 1 ′ x ′ + t 1 2 e − i k s i n θ − 1 ′ x ′ ) \textbf U_I(x',y')∝ e^{ik \frac{x'^2+y'^2}{2z}} A_1 (t_0 +\frac{t_1}{2}e^{-iksin\theta_{+1}' x'}+\frac{t_1}{2}e^{-iksin\theta_{-1}' x'} ) UI(x,y)eik2zx′2+y′2A1(t0+2t1eiksinθ+1x+2t1eiksinθ1x)
引入传播系数P,并注意到 sinθ+1 = sinθ-1(±1波共轭),则有
U I ( x ′ , y ′ ) = P e i k x ′ 2 + y ′ 2 2 z A 1 ( t 0 + t 1 c o s ( k s i n θ + 1 ′ x ′ ) ) \textbf U_I(x',y')=P e^{ik \frac{x'^2+y'^2}{2z}} A_1 (t_0 +t_1 cos(k sin\theta_{+1}' x')) UI(x,y)=Peik2zx′2+y′2A1(t0+t1cos(ksinθ+1x))
再应用 阿贝正弦条件 y sinθ+1 = y’ sinθ+1’ ,和正弦光栅衍射角公式 sinθ+1 = f λ,从而可化简得
k s i n θ + 1 ′ x ′ = 2 π f V x ′ = 2 π f ′ x , f ′ = f / V , V = y ′ / y (横向放大率) k sin\theta_{+1}' x' = 2\pi \frac{f}{V} x' = 2\pi f' x, f' = f/V,V = y'/y(横向放大率) ksinθ+1x=2πVfx=2πfx,f=f/VV=y/y(横向放大率)
最后结果
U I ( x ′ , y ′ ) = P e i k x ′ 2 + y ′ 2 2 z A 1 ( t 0 + t 1 c o s ( 2 π f ′ x ′ ) ) \textbf U_I(x',y')=P e^{ik \frac{x'^2+y'^2}{2z}} A_1 (t_0 +t_1 cos(2\pi f' x')) UI(x,y)=Peik2zx′2+y′2A1(t0+t1cos(2πfx))
可见:
(1) 单频信息 f,经过阿贝两步成像理论,f’依旧是单频,不过f‘ ≠f,那只是几何上的缩放,这不影响象质。
(2) 影响象质的是 反衬度γ-----------复振幅反衬度,而目前
γ a b = t 1 t 0 = γ I \gamma_{ab} = \frac{t_1}{t_0} =\gamma_I γab=t0t1=γI
反衬度不变
(3) 其中,二次相因子系数,可以暂且不管,不影响强度分布,况且可用适当的光路予以消除。

光学信息处理列举

4F系统图像加减
4F系统正弦光栅滤波实现反衬度反转
图像微分运算
图像微分运算
符合光栅为滤波器,进行图像微分运算可以达到边缘增锐效果。

图像微分的数学描写
(1) 设图像函数为 t(x,y),则其微分运算为
Δ t = t ( x + Δ x , y + Δ y ) − t ( x , y ) \Delta t = t(x+\Delta x, y + \Delta y) -t(x,y) Δt=t(x+Δx,y+Δy)t(x,y)
从光学眼光看,t(x+△x,y+△y) 图像微移 (△x,△y);“-” 号表示两幅象场相位差π
(2) 选择符合光栅为滤波器,实现上述两步
H ( u , v ) = t 0 + t 1 c o s ( 2 π f 1 u ) + t 2 c o s ( 2 π f 2 u ) H(u,v) = t_0 +t_1 cos(2\pi f_1 u) + t_2 cos(2\pi f_2 u) H(u,v)=t0+t1cos(2πf1u)+t2cos(2πf2u)
一般有 t1 = t2,当有 △f = f2- f1<< f1、f2
例如 f1 ≈50mm-1 ,f2 = 52mm-1 ,△f = 2mm-1 << f1、f2
于是,在4F系统中便输出5幅 “原象”,A0、A+1、A-1、A+1’、A-1’,A0与A0’ 重合,但A+1与A+1’、A-1与A-1’不重合。
原象说明
(3) 再位移复合光栅 △u ,以致 A+1 图像与 A+1’图像分别响应不同的相移量
δ ϕ 1 = 2 π f 1 Δ u , δ ϕ 2 = 2 π f 2 Δ u \delta \phi_1 = 2\pi f_1 \Delta u, \delta \phi_2 = 2\pi f_2 \Delta u δϕ1=2πf1Δuδϕ2=2πf2Δu
故 两幅象场的相位差 △φ = 2π △f △u
令 △φ = π 以实现第二步(相减)
估算
Δ u ≈ 1 2 Δ f = 0.25 m m \Delta u ≈ \frac{1}{2 \Delta f} = 0.25mm Δuf1=0.25mm
这提供了位移系统定位精度的根据。
(4) 标准测试实验
复合光栅
通过移动复合光栅的u、v分量,得到后续三幅成像图,△y、△x、(△x,△y)。即为图像微分。

黑白胶卷彩色显示
黑白胶卷彩色显示
通过在底片胶卷前添加光栅,进行拍照收集物信息。通过4F系统,将物信息解码出来(三种不同取向的编码光栅),有点类似伪彩色相机。

泽尼克的相衬法

相衬法 1935年提出,相衬显微镜第一台诞生,1941年。
通过改变零级斑相位,使得高度透明物体得以显示

相位物--------高度透明物 t(x,y) ≈ e^{iφ(x,y)},其物性信息,集中被反映在相位函数φ(x,y)上。
两种基本类型:φ(x,y) =2π/λ nd
经络型与浮雕型
自然还有混合型 n(x,y) d(x,y)
相位物广泛地存在于 生物切片、晶体切片、凝聚态薄膜中
一台相衬显微镜已经成为医学研究、生物学研究 具有现代实验水平的一种标识。
注意, 实际样品多少有点吸收,含微弱的振幅分布。
相衬法显微镜
零频 是高度透明物里面一个平行光正出射。原谱上的一个点在像场面上的关系是一个球面波。频谱面与像面是点面对应关系。通过改变零频的相位,将会改变整个像面的相位。相位改变后,改变了合成的方式,就会有强度的显示。

相衬法可提高高度透明样品的成像反衬度。
相衬法原理说明
(1) 若不添加任何滤波器,则 物场
U 0 ( x , y ) = A 1 t ( x , y ) = A 1 e i ϕ ( x , y ) \textbf U_0(x,y) = A_1 \textbf t(x,y) = A_1 e^{i \phi(x,y)} U0(x,y)=A1t(x,y)=A1eiϕ(x,y)
象场
U i ( x ′ , y ′ ) ∝ U 0 ( x ′ , y ′ ) = A 1 e i ϕ ( x ′ , y ′ ) \textbf U_i(x',y') ∝ \textbf U_0(x',y') =A_1 e^{i \phi(x',y')} Ui(x,y)U0(x,y)=A1eiϕ(x,y)
光强分布
I ( x ′ , y ′ ) = U i U i ∗ ∝ A 1 2 ,(设 V = 1 ) I(x',y') = \textbf U_i \textbf U_i^* ∝ A_1^2,(设V=1) I(x,y)=UiUiA12,(设V=1
均匀一片,无强度起伏,丢失相位信息;
(2) 若在后焦点(零级谱斑) 添加相移滴
相移量 δ = 2π/λ (n0-1)h,则象场(干涉场)内部的相位关系发生了变化,让我们分析其变化及后果:
展开物函数
U 0 ( x , y ) = A 1 e i ϕ ( x , y ) = A 1 [ 1 + i ϕ ( x , y ) − 1 / 2 ϕ ( x , y ) 2 − i / 6 ϕ 3 + . . . ] = A 1 + A 1 [ i ϕ ( x , y ) − 1 / 2 ϕ 2 ( x , y ) − . . ] \textbf U_0(x,y) =A_1 e^{i\phi(x,y)} =A_1[1+i\phi(x,y)-1/2\phi(x,y)^2 - i/6 \phi^3 +...] =A_1 +A_1[i\phi(x,y)-1/2\phi^2(x,y)-..] U0(x,y)=A1eiϕ(x,y)=A1[1+iϕ(x,y)1/2ϕ(x,y)2i/6ϕ3+...]=A1+A1[iϕ(x,y)1/2ϕ2(x,y)..]
泰勒展开,映在谱面上:A1 → 0级谱斑,强谱斑(本底),A1[iφ(x,y)-1/2φ(x,y)2 -…] 弥散于谱面上,弱谱分布(信息)
(3)计及0级谱斑的相移---------须知,点源的相移将波及整个象面,即 谱面上的点相移将导致与其相应的空间频率信息的相移,数学描写 本底 A1项→ A1 e
于是,新的物场、象场发生改变
U 0 ′ ( x , y ) = A 1 e i δ + A 1 [ i ϕ ( x , y ) − 1 / 2 ϕ 2 ( x , y ) − . . ] , U i ′ ( x , y ) ∝ U 0 ′ ( x , y ) \textbf U_0'(x,y) =A_1 e^{i\delta} +A_1[i\phi(x,y)-1/2\phi^2(x,y)-..],\textbf U_i'(x,y) ∝ \textbf U_0'(x,y) U0(x,y)=A1eiδ+A1[iϕ(x,y)1/2ϕ2(x,y)..]Ui(x,y)U0(x,y)
U i ′ ( x , y ) = A 1 ( e i δ − 1 ) + A 1 + A 1 [ i ϕ ( x , y ) − 1 / 2 ϕ 2 ( x , y ) − . . ] = A 1 [ ( e i δ − 1 ) + e i ϕ ( x ′ , y ′ ) ] \textbf U_i'(x,y) = A_1(e^{i\delta}-1) + A_1 +A1[i\phi(x,y)-1/2\phi^2(x,y)-..]=A_1[(e^{i\delta}-1) + e^{i \phi(x',y')}] Ui(x,y)=A1(eiδ1)+A1+A1[iϕ(x,y)1/2ϕ2(x,y)..]=A1[(eiδ1)+eiϕ(x,y)]
有象面光强分布
I ′ ( x ′ , y ′ ) = U i U i ∗ ∝ A 1 2 [ 3 + 2 ( s i n δ s i n ϕ + c o s δ c o s ϕ − c o s ϕ − c o s δ ) ] I'(x',y') =\textbf U_i \textbf U_i^* ∝ A_1^2 [3 + 2(sin\delta sin\phi +cos\delta cos\phi - cos\phi - cos\delta)] I(x,y)=UiUiA12[3+2(sinδsinϕ+cosδcosϕcosϕcosδ)]
物相位信息已经被反映到可观测的光强分布上了。弱相位近似,为了线性调制,即考虑近似条件 φ<< 1 rad,有 cosφ =1 ,sinφ = φ,于是有
I ′ ( x ′ , y ′ ) ∝ A 1 2 ( 1 + 2 s i n δ ϕ ( x ′ , y ′ ) ) I'(x',y')∝ A_1^2 (1+2sin\delta \phi(x',y')) I(x,y)A12(1+2sinδϕ(x,y))
这说明两者之间呈现线性关系,样品上的相位信息,线性地调制了象面上的光强分布,有利于实验结果分析。

调制灵敏度-------取决于系数 2sinδ
可谓之 相衬度(相移引来反衬度)
相移反衬度

相位物可视化的其他光学方法

材料科学、生命科学、医学、凝聚态物理学中存在大量高度透明的样品,如何让相位物可视,强度分布能否与相位分布相关起来,从可观测的强度分布里推演相位分布情况。可纯光学实现,也可通过计算机图像处理实现。
在这里插入图片描述
离焦法,即找到可显示光子的面,后离开象面即可。无需任何滤波器。

加深相衬法的认识(相衬法内含双光束干涉)
U i ( x ′ , y ′ ) ∝ A 1 ( e i δ − 1 ) + A 1 e i ϕ ( x ′ , y ′ ) = U r + U 0 ( x ′ , y ′ ) \textbf U_i(x',y') ∝ A_1 (e^{i\delta} -1) + A_1 e^{i \phi(x',y')} = \textbf U_r + \textbf U_0(x',y') Ui(x,y)A1(eiδ1)+A1eiϕ(x,y)=Ur+U0(x,y)
其中
U r = A 1 ( e i δ − 1 ) = A 1 2 s i n ( δ / 2 ) e i ( π / 2 + δ / 2 ) \textbf U_r = A_1 (e^{i\delta} -1) = A_1 2 sin(\delta/2) e^{i(\pi/2 + \delta/2)} Ur=A1(eiδ1)=A12sin(δ/2)ei(π/2+δ/2)
是自生的参考光波,U0(x’,y’)是象面上再现的一个原物的光波。正是Ur参与了相干叠加,改变了实振幅的分布,呈现出非均匀的光强分布。理论上说,泽尼克的相衬法,巧妙的包含了双光束干涉的技术。

夫琅禾费衍射的普遍定义与多种装置

接收夫琅禾费衍射场的几种装置
在这里插入图片描述
在这里插入图片描述
远场接收
会聚球面波照明象面接收
发散球面波照明象面接收
平面波照明后焦面接收

夫琅禾费衍射场的标准形式--------------来自定义装置
平面波照明,无穷远接收
U ( θ 1 , θ 2 ) ≈ − i λ r 0 ∫ ∫ A 1 t ( x , y ) e i k r   d x d y \textbf U(\theta_1,\theta_2) ≈ \frac{-i}{\lambda r_0} \int \int A_1 \textbf t(x,y) e^{ikr} \,dxdy U(θ1,θ2)λr0i∫∫A1t(x,y)eikrdxdy
其中
e i k r = e i k r 0 e i k ( r − r 0 ) = e i k r 0 e − i k ( s i n θ 1 x + s i n θ 2 y ) e^{ikr} = e^{ikr_0} e^{ik(r-r_0)} = e^{ikr_0} e^{-ik(sin\theta_1 x + sin\theta_2 y)} eikr=eikr0eik(rr0)=eikr0eik(sinθ1x+sinθ2y)
于是
U ( θ 1 , θ 2 ) ≈ − i λ r 0 e i k r 0 A 1 ∫ ∫ t ( x , y ) e i k ( s i n θ 1 x + s i n θ 2 y )   d x d y \textbf U(\theta_1,\theta_2) ≈ \frac{-i}{\lambda r_0} e^{ikr_0} A_1 \int \int \textbf t(x,y) e^{ik(sin\theta_1 x + sin\theta_2 y)} \,dxdy U(θ1,θ2)λr0ieikr0A1∫∫t(x,y)eik(sinθ1x+sinθ2y)dxdy
以屏函数x线性相因子的形式,作为衍射积分的被积函数,给出了夫琅禾费衍射场的标准形式。与菲涅尔衍射积分---------------含二次相因子、非线性相因子,从而理论上划清了接线。
U(θ1,θ2)----------衍射场的角分布,角谱

2、远场接收装置
(x,y)屏面→(方式:z,无透镜)→ (x’,y’)接收面,屏面 Q(x,y) ,接收面P(x’,y’)
平面波照明,远场接收:
U ( x ′ , y ′ ) ≈ − i λ r 0 ∫ ∫ A 1 t ( x , y ) e i k r   d x d y \textbf U(x',y') ≈ \frac{-i}{\lambda r_0} \int \int A_1 \textbf t(x,y) e^{ikr} \,dxdy U(x,y)λr0i∫∫A1t(x,y)eikrdxdy
其中,傍轴条件下
r ≈ z + x 2 + y 2 2 z + x ′ + y ′ 2 z − x x ′ + y y ′ z , r 0 ( x ′ , y ′ ) = z + x ′ 2 + y ′ 2 2 z r ≈ z + \frac{x^2+y^2}{2z}+ \frac{x'+y'}{2z} - \frac{xx'+yy'}{z}, r_0(x',y')=z+\frac{x'^2+y'^2}{2z} rz+2zx2+y2+2zx+yzxx+yy,r0(x,y)=z+2zx′2+y′2
于是
U ( x ′ , y ′ ) ≈ − i λ r 0 e i k r 0 ( x ′ , y ′ ) A 1 ∫ ∫ t ( x , y ) e i k ( x 2 + y 2 2 z − x x ′ + y y ′ z )   d x d y ,其中 ∫ ∫ t ( x , y ) e i k ( x 2 + y 2 2 z − x x ′ + y y ′ z )   d x d y ,代表菲涅尔衍射的形式。 \textbf U(x',y') ≈ \frac{-i}{\lambda r_0} e^{ikr_0(x',y')} A_1 \int \int \textbf t(x,y) e^{ik( \frac{x^2+y^2}{2z} - \frac{xx'+yy'}{z})} \,dxdy,其中\int \int \textbf t(x,y) e^{ik( \frac{x^2+y^2}{2z} - \frac{xx'+yy'}{z})} \,dxdy,代表菲涅尔衍射的形式。 U(x,y)λr0ieikr0(x,y)A1∫∫t(x,y)eik(2zx2+y2zxx+yy)dxdy,其中∫∫t(x,y)eik(2zx2+y2zxx+yy)dxdy,代表菲涅尔衍射的形式。
当远场条件被满足,即λz >> (x2+y2),许可略去二次相因子
U ( x ′ , y ′ ) ≈ − i 2 r 0 A 1 e i k r 0 ( x ′ , y ′ ) ∫ ∫ A 1 t ( x , y ) e − i k x x ′ + y y ′ z )   d x d y \textbf U(x',y') ≈\frac{-i}{2r_0} A_1 e^{ikr_0(x',y')} \int \int A_1 \textbf t(x,y) e^{-ik \frac{xx'+yy'}{z})} \,dxdy U(x,y)2r0iA1eikr0(x,y)∫∫A1t(x,y)eikzxx+yy)dxdy
这是无透镜远场系统,省了一个透镜自有优点,倘若实验室长度空间允许的话。

3、会聚球面波照明,象面接收
衍射场
U ( x ′ , y ′ ) ≈ − i λ r 0 ∫ ∫ t U 1 e i k r   d x d y \textbf U(x',y') ≈ \frac{-i}{\lambda r_0} \int \int\textbf t \textbf U_1 e^{ikr} \,dxdy U(x,y)λr0i∫∫tU1eikrdxdy
入射于屏的光场是会聚于S’点的球面波前函数,为
U 1 ( x , y ′ ) ≈ A 1 e − i k x 2 + y 2 2 z \textbf U_1(x,y') ≈A_1 e^{-ik \frac{x^2+y^2}{2z}} U1(x,y)A1eik2zx2+y2
积分核展开
e i k r ≈ e i k ( x 2 + y 2 2 z + x ′ + y ′ 2 z − x x ′ + y y ′ z ) ,注意到 e − i k x 2 + y 2 2 z 相互抵消 e^{ikr} ≈ e^{ik(\frac{x^2+y^2}{2z}+ \frac{x'+y'}{2z} - \frac{xx'+yy'}{z})} ,注意到e^{-ik \frac{x^2+y^2}{2z}}相互抵消 eikreik(2zx2+y2+2zx+yzxx+yy),注意到eik2zx2+y2相互抵消
其中参考光程
r 0 ( x ′ , y ′ ) = z + x ′ 2 + y ′ 2 2 z , U ( x ′ , y ′ ) ≈ − i λ r 0 A 1 e i k r 0 ( x ′ , y ′ ) ∫ ∫ t ( x , y ) e − i k x x ′ + y y ′ z )   d x d y r_0(x',y') = z + \frac{x'^2+y'^2}{2z},\textbf U(x',y')≈ \frac{-i}{\lambda r_0} A_1 e^{ikr_0(x',y')}\int \int\textbf t(x,y) e^{-ik\frac{xx'+yy'}{z})} \,dxdy r0(x,y)=z+2zx′2+y′2,U(x,y)λr0iA1eikr0(x,y)∫∫t(x,y)eikzxx+yy)dxdy
夫琅禾费衍射场的标准形式,教材文献中的夫琅禾费图片均来自此类装置。
其优点:仅要求傍轴条件,不要求原场条件;且便于调节图样大小

4、发散球面波照明象面接收
证明思路
衍射场被简化为
U ( x ′ , y ′ ) = − i λ z A 1 e − i k ( z + x 0 2 + y 0 2 2 z ) ∫ ∫ t e i k ( x 0 x + y 0 y z )   d x d y = − i λ z A 1 e − i k ( z + x 0 2 + y 0 2 2 z ) ∫ ∫ t ( x , y ) e i k ( x ′ x + y ′ y V z )   d x d y \textbf U(x',y') = \frac{-i}{\lambda z} A_1 e^{-ik(z + \frac{x_0^2+y_0^2}{2z})} \int\int \textbf t e^{ik(\frac{x_0x + y_0y}{z})} \,dxdy=\frac{-i}{\lambda z} A_1 e^{-ik(z + \frac{x_0^2+y_0^2}{2z})}\int\int \textbf t(x,y) e^{ik(\frac{x'x + y'y}{Vz})} \,dxdy U(x,y)=λziA1eik(z+2zx02+y02)∫∫teik(zx0x+y0y)dxdy=λziA1eik(z+2zx02+y02)∫∫t(x,y)eik(Vzxx+yy)dxdy
符合夫琅禾费衍射场的标准形式。
直观理解:光的可逆性。图像的额横向放大率 v=x0/x’,y0/y’

6、函数t(x,y)的傅里叶积分变换 t(x,y)←→T(fx,fy)
T ( f x , f y ) = ∫ ∫ t ( x , y ) e i 2 π ( f x x + f y y ) d x d y \textbf T(f_x,f_y)=\int\int \textbf t(x,y) e^{i2\pi(f_x x+f_y y)} dxdy T(fx,fy)=∫∫t(x,y)ei2π(fxx+fyy)dxdy
对比
KaTeX parse error: Expected 'EOF', got '}' at position 63: …eta_1,\theta_2)}̲ \int\int \text…
可见,两者具有相同的积分结构,若令(2πfx,2πfy)=(ksinθ1,ksinθ2),则有
U ( θ 1 , θ 2 ) = C e i k r 0 F [ t ( x , y ) ] , \textbf U(\theta_1,\theta_2) =C e^{ikr_0} F[\textbf t(x,y)], U(θ1,θ2)=Ceikr0F[t(x,y)],
改写 *式,(sinθ1,sinθ2) =(λ fx,λ fy)
即 夫琅禾费衍射场场点位置与空间频率一一对应,或者(x’,y’)=(λz fx,λz fy)
夫琅禾费衍射场实现了一个屏函数的傅里叶变换

在这里插入图片描述
消除积分号的二次相因子,获得纯净的屏函数的傅里叶变换
傅里叶变换面,光程相等
在这里插入图片描述
在这里插入图片描述
可以通过光学的方式进行傅里叶变换。


参考内容

1、http://www.icourses.cn/sCourse/course_3571.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B叔最强哦

一起学习,一起加油

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值