哈希表的实现

哈希表概念

二叉搜索树具有对数时间的表现,但这样的表现建立在一个假设上:输入的数据有足够的随机性。哈希表又名散列表,在插入、删除、搜索等操作上具有「常数平均时间」的表现,而且这种表现是以统计为基础,不需依赖输入元素的随机性。

听起来似乎不可能,倒也不是,例如:

假设所有元素都是 8-bits 的正整数,范围 0~255,那么简单得使用一个数组就可以满足上述要求。首先配置一个数组 Q,拥有 256 个元素,索引号码 0~255,初始值全部为 0。每一个元素值代表相应的元素的出现次数。如果插入元素 i,就执行 Q[i]++,如果删除元素 i,就执行 Q[i]--,如果查找元素 i,就看 Q[i] 是否为 0。

哈希概念

这个方法有两个很严重的问题:

  1. 如果元素是 32-bits,数组的大小就是 2 32 = 4   G B 2^{32} = 4\ GB 232=4 GB,这就太大了,更不用说 64-bits 的数了
  2. 如果元素类型是字符串而非整数,就需要某种方法,使其可用作数组的索引

散列函数

如何避免使用一个太大的数组,以及如何将字符串转化为数组的索引呢?

一种常见的方法就是使用某种映射函数,将某一元素映射为一个「大小可接受的索引」,这样的函数称为散列函数。

散列函数应有以下特性:

  • 函数的定义域必须包含需要存储的全部关键字,当散列表有 m 个地址时,其值域在 0 到 m - 1 之间
  • 函数计算出来的地址能均匀分布在整个空间

直接定址法

取关键字的某个线性函数为散列地址: H a s h ( K e y ) = A ∗ K e y + B Hash(Key) = A * Key + B Hash(Key)=AKey+B

优点:简单、均匀。

缺点:需要事先知道关键字的分布情况。

使用场景:数据范围比较集中的情况。

除留余数法

设散列表的索引个数为 m,取一个不大于 m,但最接近 m 的质数 p 最为除数,按照散列函数: H a s h ( K e y ) = k e y   %   p Hash(Key) = key\ \%\ p Hash(Key)=key % p,将关键字转化为哈希地址。

平方取中法

假设关键字为 1230,它的平方是 1512900,取中间的 3 位 129 作为哈希地址;再比如关键字为 321,它的平方是 103041,取中间的 3 位 304(或 30)作为哈希地址。

哈希冲突

使用散列函数会带来一个问题:可能有不同的元素被映射到相同的位置。这无法避免,因为元素个数大于数组的容量,这便是「哈希冲突」。解决冲突问题的方法有很有,包括线性探测、二次探测、开散列等。

线性探测

当散列函数计算出某个元素的插入位置,而该位置上已有其他元素了。最简单的方法就是向下一一寻找(到达尾端,就从头开始找),直到找到一个可用位置。

进行元素搜索时同理,如果散列函数计算出来的位置上的元素值与目标不符,就向下一一寻找,直到找到目标值或遇到空。

至于元素的删除,必须采用伪删除,即只标记删除记号,实际删除操作在哈希表重新整理时再进行。这是因为哈希表中的每一个元素不仅表示它自己,也影响到其他元素的位置。

线性探测

从上述插入过程我们可以看出,当哈希表中元素变多时,发生冲突的概率也变大了。由此,我们引出哈希表一个重要概念:负载因子。

负载因子定义为:Q = 表中元素个数 / 哈希表的长度

  • 负载因子越大,剩余可用空间越少,发生冲突可能越大
  • 负载因子越小,剩余可用空间越多,发生冲突可能越小,同时空间浪费更多

因此,控制负载因子是个非常重要的事。对于开放定址法(发生了冲突,就找下一个可用位置),负载因子应控制在 0.7~0.8 以下。超过 0.8,查找时的 CPU 缓存不命中按照指数曲线上升。

二次探测

线性探测的缺陷是产生冲突的数据会堆在一起,这与其找下一个空位置的方式有关,它找空位置的方式是挨着往后逐个去找。二次探测主要用来解决数据堆积的问题,其命名由来是因为解决碰撞问题的方程式 F ( i ) = i 2 F(i) = i^2 F(i)=i2 是个二次方程式。

更具体地说,如果散列函数计算出新元素的位置为 H,而该位置实际已被使用,那么将尝试 H + 1 2 ,   H + 2 2 ,   H + 3 2 ,   . . . ,   H + i 2 H + 1^2,\ H + 2^2,\ H + 3^2,\ ... ,\ H + i^2 H+12, H+22, H+32, ..., H+i2,而不是像线性探测那样依次尝试 H + 1 ,   H + 2 ,   H + 3 ,   . . . ,   H + i H + 1,\ H + 2,\ H + 3,\ ... ,\ H + i H+1, H+2, H+3, ..., H+i

二次探测

大量实验表明:当表格大小为质数,而且保持负载因子在 0.5 以下(超过 0.5 就重新配置),那么就可以确定每插入一个新元素所需要的探测次数不超过 2。

链地址法

这种方法是在每一个表格元素中维护一个链表,在呢个链表上执行元素的插入、查询、删除等操作。这时表格内的每个单元不再只有一个节点,而可能有多个节点。

开散列

节点的定义:

template <class Value>
struct __hashtable_node {
  __hashtable_node* next;
  Value val;
};

哈希表的实现

闭散列

接口总览

template <class K, class V>
class HashTable {
  struct Elem {
    pair<K, V> _kv;
    State _state = EMPTY;
  };
 public:
  Elem* Find(const K& key);
  bool Insert(const pair<K, V>& kv);
  bool Erase(const K& key);
 private:
  vector<Elem> _table;
  size_t _n = 0;
};

节点的结构

因为闭散列的哈希表中的每一个元素不仅表示它自己,也影响到其他元素的位置。所以要使用伪删除,我们使用一个变量来表示。

/// @brief 标记每个位置状态
enum State {
  EMPTY,	// 空
  EXIST,	// 有数据
  DELETE	// 有数据,但已被删除
};

哈希表的节点结构,不仅存储数据,还存储状态。

/// @brief 哈希表的节点
struct Elem {
  pair<K, V> _kv;	// 存储数据
  State _state;	  // 存储状态	
};

查找

查找的思路比较简单:

  1. 利用散列函数获取映射后的索引
  2. 遍历数组看是否存在,直到遇到空表示查找失败
/// @brief 查找指定 key
/// @param key 待查找节点的 key 值
/// @return 找到返回节点的指针,没找到返回空指针
Elem* Find(const K& key) {
  if (_table.empty()) {
    return nullptr;
  }

  // 使用除留余数法的简化版本,并没有寻找质数
  // 同时,该版本只能用于正整数,对于字符串等需使用其他散列函数
  size_t start = key % _table.size();	
  size_t index = start;
  size_t i = 1;

  // 直到找到空位置停止
  while (_table[index]._state != EMPTY) {
    if (_table[index]._state == EXIST && 
        _table[index]._kv.first == key) {
      return &_table[index];
    }

    index = start + i;
    index %= _table.size();
    ++i;
    // 判断是否重复查找
    if (index == start) {
      return nullptr;
    }
  }
  return nullptr;
}

在上面代码的查找过程中,加了句用于判断是否重复查找的代码。理论上上述代码不会出现所有的位置都有数据,查找不存在的数据时陷入死循环的情况。因为哈希表会扩容,闭散列下负载因子不会到 1。

但假如,我们插入了 5 个数据,又删除了它们,之后又插入了 5 个数据,将 10 个初始位置都变为非 EMPTY。此时我们查找的值不存在的话,是会陷入死循环的。

插入

插入的过程稍微复杂一些:

  1. 首先检查待插入的 key 值是否存在
  2. 其次需要检查是否需要扩容
  3. 使用线性探测方式将节点插入
/// @brief 插入节点
/// @param kv 待插入的节点
/// @return 插入成功返回 true,失败返回 false
bool Insert(const pair<K, V>& kv) {
  // 检查是否已经存在
  Elem* res = Find(kv.first);
  if (res != nullptr) {
    return false;
  }

  // 看是否需要扩容
  if (_table.empty()) {
    _table.resize(10);
  } else if (_n / 0.7 > _table.size()) {
    HashTable backUp;
    backUp._table.resize(2 * _table.size());
    // C++17 的结构化绑定
    // k 绑定 _kv,s 绑定 _state
    for (auto& [k, s] : _table) {
      if (s == EXIST) {
        backUp.Insert(k);
      }
    }
    // 交换这两个哈希表
    _table.swap(backUp._table);
  } // if (_table.empty())

  // 将数据插入
  size_t start = kv.first % _table.size();
  size_t index = start;
  size_t i = 1;

  // 找一个可以插入的位置
  while (_table[index]._state == EXIST) {
    index = start + i;
    index %= _table.size();
    ++i;
  }
  _table[index]._kv = kv;
  _table[index]._state = EXIST;
  ++_n;
  return true;
}

删除

删除的过程非常简单:

  1. 查找指定 key
  2. 找到了就将其状态设为 DELETE,并减少表中元素个数
/// @brief 删除指定 key 值
/// @param key 待删除节点的 key
/// @return 删除成功返回 true,失败返回 false
bool Erase(const K& key) {
  Elem* res = Find(key);
  if (res != nullptr) {
    res->_state = DELETE;
    --_n;
    return true;
  }
  return false;
}

开散列

接口总览

template <class K, class V>
class HashTable {
  struct Elem {
    Elem(const pair<K, V>& kv) 
        : _kv(kv), 
          _next(nullptr) {}
        
    pair<K, V> _kv;
    Elem* _next;
  };
 public:
  Elem* Find(const K& key);
  bool Insert(const pair<K, V>& kv);
  bool Erase(const K& key);
 private:
  vector<Elem*> _table;
  size_t _n = 0;
};

节点的结构

使用链地址法解决哈希冲突就不再需要伪删除了,但需要一个指针,指向相同索引的下一个节点。

/// @brief 哈希表的节点
struct Elem {
  Elem(const pair<K, V>& kv) 
      : _kv(kv),
        _next(nullptr) {}
  
  pair<K, V> _kv;	// 存储数据
  Elem* _next;	  // 存在下一节点地址
};

查找

查找的实现比较简单:

  1. 利用散列函数获取映射后的索引
  2. 遍历该索引位置的链表
/// @brief 查找指定 key
/// @param key 待查找节点的 key 值
/// @return 找到返回节点的指针,没找到返回空指针
Elem* Find(const K& key) {
  if (_table.empty()) {
    return nullptr;
  }

  size_t index = key % _table.size();
  Elem* cur = _table[index];
  // 遍历该位置链表
  while (cur != nullptr) {
    if (cur->_kv.first == key) {
      return cur;
    }
    cur = cur->_next;
  }
  return nullptr;
}

插入

开散列下的插入比闭散列简单:

  1. 首先检查待插入的 key 值是否存在
  2. 其次需要检查是否需要扩容
  3. 将新节点以头插方式插入
/// @brief 插入节点
/// @param kv 待插入的节点
/// @return 插入成功返回 true,失败返回 false
bool Insert(const pair<K, V>& kv) {
  // 检查是否已经存在
  Elem* res = Find(kv.first);
  if (res != nullptr) {
    return false;
  }

  // 检查是否需要扩容
  if (_table.size() == _n) {
    vector<Elem*> backUp;
    size_t newSize = _table.size() == 0 ? 10 : 2 * _table.size();
    backUp.resize(newSize);

    // 遍历原哈希表,将原节点插入新表
    for (int i = 0; i < _table.size(); ++i) {
      Elem* cur = _table[i];
      // 将原哈希表的节点插到新表上,不用重新申请节点
      while (cur != nullptr) {
        Elem* tmp = cur->_next;
        size_t index = cur->_kv.first % backUp.size();
        cur->_next = backUp[index];
        backUp[index] = cur;
        cur = tmp;
      }
      _table[i] = nullptr;
    } // for (int i = 0; i < _table.size(); ++i)
    _table.swap(backUp);
  } // if (_table.size() == _n)

  // 将新节点以头插的方式插入
  size_t index = kv.first % _table.size();
  Elem* newElem = new Elem(kv);
  newElem->_next = _table[index];
  _table[index] = newElem;
  ++_n;
  return true;
}

删除

开散列的删除与闭散列有些许不同:

  1. 获取 key 对应的索引
  2. 遍历该位置链表,找到就删除
/// @brief 删除指定 key 值
/// @param key 待删除节点的 key
/// @return 删除成功返回 true,失败返回 false
bool Erase(const K& key) {
  size_t index = key % _table.size();
  Elem* prev = nullptr;
  Elem* cur = _table[index];
  while (cur != nullptr) {
    if (cur->_kv.first == key) {
      if (prev == nullptr) {
        // 是该位置第一个节点
        _table[index] = cur->_next;
      } else {
        prev->_next = cur->_next;
      }
      delete cur;	// 释放该节点
      --_n;
      return true;
    }
    prev = cur;
    cur = cur->_next;
  } // while (cur != nullptr)
  return false;
}
  • 6
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值