知识趣记-机器学习

知识趣记-机器学习

knn算法:
找出距离测试样本点的前k个距离最近的点,判断这些点中,哪个类别的样本的数量最多,则将测试样本点归于这个类别。

k-means算法:
首先输入k,目的是将所有点分成k簇;
首先选k个点,作为k簇的的质心,然后对集合中所有的点,计算其到这k个聚类中心的距离,与谁近就跟谁;
所有点分成k个簇,计算每个簇的质心,更新质心的值;
循环以上步骤,直到质心的变化小于某个设定的阈值时,即完成分类。

k-means是一个不稳定的算法,每次迭代完结果都不一样。

监督学习:
既有特征,又有标签,让机器自己找到特征和标签之前的联系
非监督学习:
只有数据,不知道数据、特征之间的关系,让机器自学,是没有标签的。

过拟合:
在训练集上效果很好 ,在测试集上效果很差。

欠拟合:
在训练集表现很差,训练得还不够,在测试集上效果也很差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值