推导斐波那契数列通项公式

( 这里用F_n 代表斐波那契数列第 n 项,且约定 F_0=0 )

设有一个矩阵 M 使得\begin{pmatrix}F_n\\F_{n+1}\end{pmatrix}=M\begin{pmatrix}F_{n-1}\\F_{n}\end{pmatrix}

M=\begin{pmatrix}A&C\\B&D\end{pmatrix} 就有\begin{pmatrix}F_n\\F_{n+1}\end{pmatrix}=\begin{pmatrix}AF_{n-1}+CF_{n}\\BF_{n-1}+DF_{n}\end{pmatrix}

直接令 A=0 ,再令 C=B=D=1 ,得到 M=\begin{pmatrix}0&1\\1&1\end{pmatrix}

M 特征分解,就可以求出 \begin{pmatrix}F_n\\F_{n+1}\end{pmatrix} 的通项式

\begin{pmatrix}F_n\\F_{n+1}\end{pmatrix}=M\begin{pmatrix}F_{n-1}\\F_{n}\end{pmatrix}\Rightarrow\begin{pmatrix}F_n\\F_{n+1}\end{pmatrix}=M^n\begin{pmatrix}F_{0}\\F_{1}\end{pmatrix}\Rightarrow\begin{pmatrix}F_n\\F_{n+1}\end{pmatrix}=PD^nP^{-1}\begin{pmatrix}0\\1\end{pmatrix}

解特征方程 \det(M-\lambda I)=0 得到M的特征值\lambda=\frac{1\pm\displaystyle\sqrt{5}}{2}

然后得到两个的特征向量 \begin{pmatrix}1\\\\\displaystyle\frac{1\pm\sqrt 5}{2}\end{pmatrix}

\begin{aligned}P^{-1}&=\begin{vmatrix}1&1\\\\\displaystyle\frac{1+\sqrt 5}{2}&\displaystyle\frac{1-\sqrt 5}{2}\end{vmatrix}^{-1}\begin{pmatrix}\displaystyle\frac{1-\sqrt 5}{2}&-\displaystyle\frac{1+\sqrt 5}{2}\\\\-1&1\end{pmatrix}^{\rm T}\\&=\begin{pmatrix}\displaystyle\frac{\sqrt 5-1}{2\sqrt 5}&\displaystyle\frac{1}{\sqrt 5}\\\\\displaystyle\frac{\sqrt 5 + 1}{2\sqrt 5}&\displaystyle-\frac{1}{\sqrt 5}\end{pmatrix}\end{aligned}

\begin{aligned}F_n&=\begin{pmatrix}1&0\end{pmatrix}\begin{pmatrix}1&1\\\\\displaystyle\frac{1+\sqrt 5}{2}&\displaystyle\frac{1-\sqrt 5}{2}\end{pmatrix}\begin{pmatrix}\displaystyle\left(\frac{1+\sqrt 5}{2}\right)^{n}&0\\0&\displaystyle\left(\frac{1-\sqrt 5}{2}\right)^n\end{pmatrix}\begin{pmatrix}\displaystyle\frac{\sqrt 5-1}{2\sqrt 5}&\displaystyle\frac{1}{\sqrt 5}\\\\\displaystyle\frac{\sqrt 5 + 1}{2\sqrt 5}&\displaystyle-\frac{1}{\sqrt 5}\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix}\\&=\begin{pmatrix}1&0\end{pmatrix}\begin{pmatrix}1&1\\\\\displaystyle\frac{1+\sqrt 5}{2}&\displaystyle\frac{1-\sqrt 5}{2}\end{pmatrix}\begin{pmatrix}\displaystyle\left(\frac{1+\sqrt 5}{2}\right)^{n}&0\\0&\displaystyle\left(\frac{1-\sqrt 5}{2}\right)^n\end{pmatrix}\begin{pmatrix}\displaystyle\frac{1}{\sqrt{5}}\\\\\displaystyle-\frac{1}{\sqrt{5}}\end{pmatrix}\\&=\frac{2^{-n}}{\sqrt 5}\begin{pmatrix}1&0\end{pmatrix}\begin{pmatrix}1&1\\\\\displaystyle\frac{1+\sqrt 5}{2}&\displaystyle\frac{1-\sqrt 5}{2}\end{pmatrix}\begin{pmatrix}\displaystyle\left(1+\sqrt 5\right)^n\\-\displaystyle\left(1-\sqrt 5\right)^n\end{pmatrix}\\&=\frac{\displaystyle\left(\frac{1+\displaystyle\sqrt{5}}{2}\right)^n-\displaystyle\left(\frac{1-\displaystyle\sqrt{5}}{2}\right)^n}{\displaystyle\sqrt{5}}\end{aligned}

所以

F_n=\frac{\displaystyle\left(\frac{1+\displaystyle\sqrt{5}}{2}\right)^n-\displaystyle\left(\frac{1-\displaystyle\sqrt{5}}{2}\right)^n}{\displaystyle\sqrt{5}}


相同的方法可以求形如 A_{n}=c_1A_{n-1}+c_2A_{n-2} 递推式的通项公式,

只要让 M=\begin{pmatrix}0&1\\c_2&c_1\end{pmatrix} ,剩下的步骤一模一样

甚至还可以扩展到更高维度的矩阵求形如 A_{n}=c_1A_{n-1}+c_2A_{n-2}+\cdots+c_mA_{n-m} 的通项公式

当然,前提是 M 非奇异,且拥有 m个线性无关的特征向量


  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值