自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 OFDM雷达设计仿真与代码

真的好久没写博客了,最近这么些时间学了好多杂七杂八的东西,在这里总结归纳一下OFDM雷达的相关学习心路历程和相关感悟,希望能和之前的博客一样帮助一些同学。这个部分我也是刚接触没多久,所以可能会像上次一样,会连载一段时间。老样子,代码会放在我的Github库里(可能会有一阵子的上传延迟。。。),欢迎大家提出意见。让我们开始吧。

2023-03-22 17:12:51 2056 2

原创 雷达系统设计之精度与分辨率

雷达系统设计之精度与分辨率概述测距分辨率测距精度问题就来了解决方案也来了入坑雷达设计方面相关,特此作为记录笔记的地方。本文所讲雷达设计为FMCW雷达设计。概述首先还是要厘清概念,分辨率和精度并不是同一个东西。分辨率是恰当分清两个目标的最小距离。而精度用来衡量真实值与测量值之间的误差。其实网上有不少用千分尺做例子的,但是到操作阶段,尤其是FMCW雷达推理阶段就很难理解了。以FMCW雷达为例,一个4Gband带宽的分辨率是3.75cm,所以两个物体之间需要差3.75cm以上才能分辨为两个点。但是呢,可能

2022-03-26 20:27:37 5780 5

原创 吴恩达深度学习课程总结归纳(二)

之前的学习中了解了一些基本的知识和定义,接下来开始学习核心一点点的东西了。一、神经网络表示神经网络的表示方法主要有层数、特征数这些来标记。在给出的PPT中,层数是通过在右上角加入[i]进行标记。在我的理解中,对于不同的神经元,我们可以配置不同的参数来提取不同的特征。在每个神经元中,保存如下信息:该神经元的参数w、bw、bw、b。通过神经元参数和输入的特征,计算a=σ(wTx+b)a=\sigma(w^Tx+b)a=σ(wTx+b)并作为该神经元的输出提供给下一层神经网络。所以如这张图所示,我们

2021-07-08 17:11:24 381

原创 吴恩达深度学习课程总结归纳(一)

该博客用来做吴恩达深度学习的学习总结归纳。一、二分分类(Binary Classification)厘清概念:在这里,x作为输入端,包含所有信息。y作为输出端,由于这是一个二分分类的问题,所以输出端y的可能性只有两个,在这里以0和1来表示,即y∈{0,1}。而对于不同的输入x(i),则也会对应不同的输出y(i)。这里的i指的是第i个样本。X作为矩阵形式,包括多项x,其表现形式为X=[x(1) x(2) … x(m)]。对应输出Y也为矩阵形式,包括多项y,表现形式为Y=[y(1) y(2) … y(m

2021-07-04 23:03:45 360 1

原创 matlab实现-合成孔径雷达(SAR)-后向投影算法(BP算法)公式分析-完整代码-详解

BPA-SAR-simulation概述使用后向投影算法(BPA)完成成像仿真SAR在网络上算是一个冷门方向,所以相关代码和原理解读其实是不多的。这个问题让SAR方向的初学者在最开始接触SAR阶段很迷惑,所以能上传一份代码,讲一讲原理就是我很开心的事情了。希望大家可以一起学习,一起进步。所谓后向投影算法,其实是考虑到雷达发出LFM波后,会有回波返回,考虑到时延以完成距离维度成像点的区分。在此基础上使用插值方法,完成方位维的脉冲压缩。现在我们开始用图片结合公式来更好地描述一下什么是BPA算法。原

2020-11-25 17:19:10 23251 59

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除