OFDM雷达设计仿真与代码

作者分享了学习OFDM雷达的心路历程,探讨了为何在FMCW体制盛行的时代仍需关注OFDM雷达。随着6G通信强调通信感知一体化,OFDM因其正交性和在无线信道中的优势,成为融合雷达和通信的理想选择。文章提到了OFDM信号降低串扰和适配低成本均衡的特点,并简单解释了OFDM如何利用IFFT生成正交频率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

真的好久没写博客了,最近这么些时间学了好多杂七杂八的东西,在这里总结归纳一下OFDM雷达的相关学习心路历程和相关感悟,希望能和之前的博客一样帮助一些同学。
这个部分我也是刚接触没多久,所以可能会像上次一样,会连载一段时间。老样子,代码会放在我的Github库里(可能会有一阵子的上传延迟。。。),欢迎大家提出意见。让我们开始吧。

OFDM雷达

当前最活跃的雷达体制当属FMCW体制。这当然归结于FMCW体制天然与低成本高精度适配。相较于常用的匹配滤波器型雷达,FMCW不知道高到哪里去了。但是问题也就出现了,我们为什么还要考虑OFDM雷达呢?

不得不说的6G

现在6G标准研发主打一个融合,现在讲究通信感知一体化。相对于通信这个覆盖范围极大的基础设置建设,雷达就多多少少有点不给力了。所以工程上合适的选择应该是将感知(雷达)功能融入通信设备中,而不是相反。这个时候FMCW雷达就有些问题了。作为单纯为了雷达而适配的波形,让他加OOK/CPM/PPM之类的适配还是多多少少有些问题的,这个时候我们就把目光投向了OFDM雷达。

你们永远的老大哥!

作为无线信道当之无愧的老大哥,OFDM信号实在是太给力了。最直接的就是降低了码间串扰和符号间串扰,同时迫零均衡天然适配低成本信道均衡。就算出了一些深度衰落,加上MIMO体制依然可以霸榜通信第一名。这个时候我们再去看OFDM雷达,自然是顺水推舟了。

让我们来稍微讲一些原理

扯了这么多闲话,现在还是像之前一样,让我们来讲讲原理部分。这部分我也不会讲非常细致,仅仅会分享一些我的理解。至于更加细致的公式推导,我推荐这两篇文章:

Xue Z, Li S, Li J, et al. OFDM radar and communication joint system using opto-electronic oscillator with phase noise degradation analysis and mitigation[J]. Journal of Lightwave Technology, 2022, 40(13): 4101-4109.
Braun K M. OFDM radar algorithms in mobile communication networks[D]. Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2014, 2014.

这里尤其推荐Braun的文章,讲得非常细致,值得一读!
下面我会基于Braun的推导给出我的理解:

比较巧妙的正交体制

正交一直是线性代数中强调的性质,俗称“线性无关”,这个性质太好用了,所以会用大段的教学讲述一个矩阵满秩的各种性质。以前没好好学,现在才觉得这个非常重要!在满足了正交性后,信号就可以用合适的正交基分解为不同的信号,然后进一步操作(我认为这是线性的一种操作,屏蔽了非线性效应就是好用啊!)。
既然正交性这么好使,那我们怎么得到正交性呢?哎,这个时候OFDM站出来巴拉巴拉了:你去看看IDFT/IFFT呗。

OFDM如何结合IFFT呢

首先我们要明确一下OFDM的全称:OFDM(Orthogonal Frequency Division Multiplexing)即正交频分复用技术。所以我们需要一组正交频率实现上述功能。
这里我们要用到的正交频率差为: Δ f = 1 / T \Delta f=1/T Δf=1/T,这里 T T T代表符号持续时间。这里去知乎盗了个图大概演示下:
这就是描述正交性质
至于为什么可以做到这么窄的频率间隔而不是把信号频率彻底分开?这就是正交性的优势。这里抄个书中的公式就知道正交的好了。
在这里插入图片描述
那么我们怎么得到OFDM信号呢?让我们借助好使的IFFT(IDFT):
在这里插入图片描述
这样我们就得到了OFDM信号了。那为什么可以当雷达用呢?

让我们去看看公式吧

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值