定矩阵(Definite matrix)和对称矩阵在各个领域都有重要的应用,这里就两者是否等价谈谈自己的理解。
1. 首先给出定矩阵和对称矩阵的定义
实半正定矩阵和实半负定矩阵(实正定矩阵和实负定矩阵去掉等于0即可):
An symmetric real matrix is said to be positive-semidefinite if for all non-zero .
An symmetric real matrix is said to be negative-semidefinite if for all non-zero .
复半正定矩阵和复半负定矩阵(复正定矩阵和复负定矩阵去掉等于0即可):
An Hermitian complex matrix is said to be positive semi-definite or non-negative-definite if for all .
An Hermitian complex matrix is said to be negative semi-definite or non-positive-definite if for all .
对称矩阵:
A symmetric matrix is a square matrix that is equal to its transpose, i.e.,
is symmetric if .
2. 正(或负)半定矩阵一定是对称矩阵吗?
回复:不一定。对于复正定矩阵,显然是不成立的。对于实矩阵来说,根据定义来说,对称性是实半定矩阵的前提条件,因此在很多文献中都默认实半定矩阵是对称的。
3.为什么一般认为实半定矩阵是对称的?
回复:先将矩阵分为歪斜对称( skew-symmetric)部分和对称( symmetric)部分之和,即
。
根据实半定矩阵的定义,是标量,则.因此,
因此,矩阵的歪斜对称部分对矩阵的半定性没有任何贡献。那么,剩下的就是对称部分了。这意味着,对于任意实矩阵,如果用对称部分 取代,可以得到与同样的二次方形式(quadratic form)。而且,对称部分是可对角化的,具有实特征值和正交的特征向量,这些都是很好的特性,便于分析计算。因此,在解决问题中,约定俗成,通常会加入半定矩阵对称性这一限制,从而可以产生了许多重要的应用。
注意如果不去看定义,单说正定矩阵并不一定是对称,举一反例,如
,是半正定的,但不是对称的。
4.对称矩阵一定是正(或负)半定矩阵吗?
回复:不一定。举一反例,如
,是对称的,但不是半定的(特征值为-0.5616和3.5616)。