定矩阵(Definite matrix)和对称矩阵相互等价吗?

定矩阵(Definite matrix)和对称矩阵在各个领域都有重要的应用,这里就两者是否等价谈谈自己的理解。

1. 首先给出定矩阵和对称矩阵的定义

实半正定矩阵和实半负定矩阵(实正定矩阵和实负定矩阵去掉等于0即可):

An {\displaystyle n\times n} symmetric real matrix {\displaystyle M} is said to be positive-semidefinite if {\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} \geq 0} for all non-zero {\displaystyle \mathbf {x} } \in {\displaystyle \mathbb {R} ^{n}}

An {\displaystyle n\times n} symmetric real matrix {\displaystyle M} is said to be negative-semidefinite if {\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} \leq 0} for all non-zero {\displaystyle \mathbf {x} } \in {\displaystyle \mathbb {R} ^{n}}

复半正定矩阵和复半负定矩阵(复正定矩阵和复负定矩阵去掉等于0即可):

An {\displaystyle n\times n} Hermitian complex matrix {\displaystyle M} is said to be positive semi-definite or non-negative-definite if {\displaystyle x^{*}Mx\geq 0} for all {\displaystyle x} \in {\displaystyle \mathbb {C} ^{n}}.

An {\displaystyle n\times n} Hermitian complex matrix {\displaystyle M} is said to be negative semi-definite or non-positive-definite if {\displaystyle x^{*}Mx\leq 0} for all {\displaystyle x} \in {\displaystyle \mathbb {C} ^{n}}.

对称矩阵:

symmetric matrix is a square matrix that is equal to its transpose, i.e., 

{\displaystyle M} is symmetric if {\displaystyle M}={\displaystyle M}^T.

2. 正(或负)半定矩阵一定是对称矩阵吗?

回复:不一定。对于复正定矩阵,显然是不成立的。对于实矩阵来说,根据定义来说,对称性是半定矩阵的前提条件,因此在很多文献中都默认实半定矩阵是对称的。

3.为什么一般认为实半定矩阵是对称的?

回复:先将矩阵M分为歪斜对称( skew-symmetric)部分\frac{M-M^{\textsf {T}}}{2}和对称( symmetric)部分\frac{M+M^{\textsf {T}}}{2}之和,即

 M=\frac{M-M^{\textsf {T}}}{2}+\frac{M+M^{\textsf {T}}}{2}

 根据半定矩阵的定义,{\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} }是标量,则{\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} }=({\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} })^{\textsf {T}}={\displaystyle \mathbf {x} ^{\textsf {T}}M^{\textsf {T}}\mathbf {x} }.因此,

{\displaystyle \mathbf {x} ^{\textsf {T}}(\frac{M-M^{\textsf {T}}}{2})\mathbf {x} }=0

因此,矩阵M的歪斜对称部分\frac{M-M^{\textsf {T}}}{2}对矩阵的半定性没有任何贡献。那么,剩下的就是对称部分\frac{M+M^{\textsf {T}}}{2}了。这意味着,对于任意实矩阵M,如果用对称部分\frac{M+M^{\textsf {T}}}{2} 取代M,可以得到与M同样的二次方形式(quadratic form)。而且,对称部分是可对角化的,具有实特征值和正交的特征向量,这些都是很好的特性,便于分析计算。因此,在解决问题中,约定俗成,通常会加入半定矩阵对称性这一限制,从而可以产生了许多重要的应用。

注意如果不去看定义,单说正定矩阵并不一定是对称,举一反例,如

M=\begin{bmatrix} 2 & 0\\ 2 & 2 \end{bmatrix}M是半正定的,但不是对称的。

4.对称矩阵一定是正(或负)半定矩阵吗?

回复:不一定。举一反例,如

M=\begin{bmatrix} 2 & 2\\ 2 & 1 \end{bmatrix}M是对称的,但不是半定的(特征值为-0.5616和3.5616)。

 

<think>好的,我现在要解决的问题是:正矩阵是否一对称矩阵?用户希望了解正矩阵对称矩阵之间的关系。我需要根据提供的引用资料来组织答案,同时遵循系统级指令中的格式要求。 首先,我需要回顾用户提供的引用内容,看看它们如何解释正矩阵对称矩阵的关系。引用[2]中提到,正矩阵义在对称矩阵上,虽然存在非对称矩阵满足特征值全为正的情况,但通常正矩阵义基于对称矩阵。这是因为二次型的问题可以通过对称化处理,转化为对称矩阵的情况。另外,引用[5]也明确说明正矩阵义建立在对称矩阵的基础上,必须满足对于任意非零向量x,x^T A x > 0。不过,这里可能存在不同义的情况吗? 接下来,引用[1][3]提到判断正矩阵需要检查对称性以及子行列式是否为正,或者使用代码验证是否为对称正矩阵。引用[4]则指出对称正矩阵需要满足对称半正(所有特征值正)。但这里可能存在术语混淆,因为通常正矩阵已经是特征值全正的情况,半正则是非负。 现在需要确认的是,不同文献中是否存在正矩阵是否必须对称的分歧。例如,有些数学分支可能允许非对称的正矩阵,但线性代数中通常义在对称矩阵上。根据引用[2]中的讨论,虽然存在非对称矩阵满足特征值全正,但二次型可以通过对称化处理,所以义在对称矩阵上更为方便。因此,严格来说,正矩阵是否必须对称取决于义的方式。在大多数线性代数教材中,正矩阵确实被义为对称的,但可能存在其他场合下义的不同。 另外,引用[5]提到义是基于对称矩阵的,因此用户的问题的答案应该是:根据标准义,正矩阵必须是对称的,但存在非对称矩阵满足其他正性条件(如特征值全正),不过这些通常不被视为正矩阵。需要明确区分不同义的情况。 接下来,我需要按照用户的要求结构化回答,包括分点说明,引用对应的引用资料,并生成相关问题。同时确保使用正确的中文表达,数学公式用$...$或$$...$$格式。 可能的结构: 1. 标准义下正矩阵必须对称(引用[2]、[5]) 2. 非对称矩阵可能满足特征值全正,但通常不被视为正(引用[2]) 3. 对称化的原因:二次型转化为对称矩阵处理(引用[2]) 4. 总结:通常正矩阵义包含对称性,但在某些情况下可能放宽 然后生成相关问题,如: - 为什么正矩阵义在对称矩阵上? - 如何判断一个矩阵是否是对称正矩阵? - 非对称矩阵的特征值全正是否意味着正? 需要注意引用标识的正确添加,例如在讨论二次型转化时引用[2],在义时引用[5]等。 现在需要确保所有数学表达式使用正确格式,例如$x^T A x > 0$,并且独立公式如矩阵例子用$$...$$。 检查是否有遗漏的引用点,并确保回答准确可靠。</think>### 正矩阵对称矩阵的关系 #### 1. 标准义下的正矩阵必须是对称矩阵 根据线性代数的标准义,正矩阵(Positive Definite Matrix)是**义在对称矩阵基础上的**。具体来说,对于任意非零向量 $\mathbf{x}$,若满足 $\mathbf{x}^T A \mathbf{x} > 0$,则称矩阵 $A$ 为正矩阵[^5]。此义明确要求矩阵 $A$ 是对称的,因此**正矩阵对称矩阵**。 #### 2. 非对称矩阵可能满足“类似正性”条件 尽管存在非对称矩阵满足所有特征值为正的条件(例如某些非对称矩阵的二次型 $\mathbf{x}^T A \mathbf{x} > 0$),但这些矩阵在标准义中**不被归类为正矩阵**。这是因为正矩阵义在数学中通常与对称性绑,以确保二次型的唯一性简化分析[^2]。 #### 3. 对称化的必要性 即使矩阵 $A$ 是非对称的,其二次型问题也可以通过对称化处理为 $\frac{1}{2}(A + A^T)$。由于反对称矩阵的二次型恒为0(即 $\mathbf{x}^T (A - A^T) \mathbf{x} = 0$),因此任何矩阵的二次型问题最终可转化为对称矩阵的情形。这也是正矩阵义在对称矩阵上的主要原因。 #### 4. 总结 - **标准义中,正矩阵必须是对称的**,这是为了简化理论分析并确保唯一性。 - 非对称矩阵即使满足某些正条件(如特征值全正),也不符合严格的正矩阵义。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值