定矩阵(Definite matrix)和对称矩阵相互等价吗?

定矩阵(Definite matrix)和对称矩阵在各个领域都有重要的应用,这里就两者是否等价谈谈自己的理解。

1. 首先给出定矩阵和对称矩阵的定义

实半正定矩阵和实半负定矩阵(实正定矩阵和实负定矩阵去掉等于0即可):

An {\displaystyle n\times n} symmetric real matrix {\displaystyle M} is said to be positive-semidefinite if {\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} \geq 0} for all non-zero {\displaystyle \mathbf {x} } \in {\displaystyle \mathbb {R} ^{n}}

An {\displaystyle n\times n} symmetric real matrix {\displaystyle M} is said to be negative-semidefinite if {\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} \leq 0} for all non-zero {\displaystyle \mathbf {x} } \in {\displaystyle \mathbb {R} ^{n}}

复半正定矩阵和复半负定矩阵(复正定矩阵和复负定矩阵去掉等于0即可):

An {\displaystyle n\times n} Hermitian complex matrix {\displaystyle M} is said to be positive semi-definite or non-negative-definite if {\displaystyle x^{*}Mx\geq 0} for all {\displaystyle x} \in {\displaystyle \mathbb {C} ^{n}}.

An {\displaystyle n\times n} Hermitian complex matrix {\displaystyle M} is said to be negative semi-definite or non-positive-definite if {\displaystyle x^{*}Mx\leq 0} for all {\displaystyle x} \in {\displaystyle \mathbb {C} ^{n}}.

对称矩阵:

symmetric matrix is a square matrix that is equal to its transpose, i.e., 

{\displaystyle M} is symmetric if {\displaystyle M}={\displaystyle M}^T.

2. 正(或负)半定矩阵一定是对称矩阵吗?

回复:不一定。对于复正定矩阵,显然是不成立的。对于实矩阵来说,根据定义来说,对称性是半定矩阵的前提条件,因此在很多文献中都默认实半定矩阵是对称的。

3.为什么一般认为实半定矩阵是对称的?

回复:先将矩阵M分为歪斜对称( skew-symmetric)部分\frac{M-M^{\textsf {T}}}{2}和对称( symmetric)部分\frac{M+M^{\textsf {T}}}{2}之和,即

 M=\frac{M-M^{\textsf {T}}}{2}+\frac{M+M^{\textsf {T}}}{2}

 根据半定矩阵的定义,{\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} }是标量,则{\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} }=({\displaystyle \mathbf {x} ^{\textsf {T}}M\mathbf {x} })^{\textsf {T}}={\displaystyle \mathbf {x} ^{\textsf {T}}M^{\textsf {T}}\mathbf {x} }.因此,

{\displaystyle \mathbf {x} ^{\textsf {T}}(\frac{M-M^{\textsf {T}}}{2})\mathbf {x} }=0

因此,矩阵M的歪斜对称部分\frac{M-M^{\textsf {T}}}{2}对矩阵的半定性没有任何贡献。那么,剩下的就是对称部分\frac{M+M^{\textsf {T}}}{2}了。这意味着,对于任意实矩阵M,如果用对称部分\frac{M+M^{\textsf {T}}}{2} 取代M,可以得到与M同样的二次方形式(quadratic form)。而且,对称部分是可对角化的,具有实特征值和正交的特征向量,这些都是很好的特性,便于分析计算。因此,在解决问题中,约定俗成,通常会加入半定矩阵对称性这一限制,从而可以产生了许多重要的应用。

注意如果不去看定义,单说正定矩阵并不一定是对称,举一反例,如

M=\begin{bmatrix} 2 & 0\\ 2 & 2 \end{bmatrix}M是半正定的,但不是对称的。

4.对称矩阵一定是正(或负)半定矩阵吗?

回复:不一定。举一反例,如

M=\begin{bmatrix} 2 & 2\\ 2 & 1 \end{bmatrix}M是对称的,但不是半定的(特征值为-0.5616和3.5616)。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值