(Multi-scale feature fusion residual network for Single ImageSuper-Resolution)论文阅读

本文介绍了MSFFRN,一种利用多尺度特征融合残差块来提升网络表示能力的超分辨率方法。MSFFRN通过提取和融合不同尺度的特征,结合浅层特征进行全局特征融合,从而重建高分辨率图像。相比于传统方法,MSFFRN能更好地利用多尺度信息,解决了深层网络训练的挑战。
摘要由CSDN通过智能技术生成

代码:https://github.com/QinJinghui/MSFFRN

 摘要:大多数SR方法没有利用LR的多尺度特征去提升网络的表示能力。此外,他们也并没有利用网络间的层次特征。作者提出了一种多尺度特征融合残差网络(MSFFRN)。作者基于残差学习,提出了多尺度特征融合残差块(MSFFRB)去检测和融合不同尺度的特征。此外,MSFFRB和浅层特征被用作不同层次的特征用于全局特征融合。最后,作者基于融合的全局特征重建HR图像。

文献综述:SRCNN是第一个用于SR的网络,自此以后越来越多的研究围绕着卷积神经网络。VDSR通过增加网络的深度和残差学习获得极大的提升。EDSR是增强的SRResNet通过去除BN层并且使用更大更深的网络结构。RDN利用残差密集块去从全部卷积层中进一步提取层次特征。RCAN通过利用RIR结构和通道注意力机制去避免深度神经网络的训练困难。尽管这些方法在PSNR和SSIM上获得了很大的性能提升,但是这些方法都是通过搭建更深和更复杂的网络结构ÿ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值