代码:https://github.com/QinJinghui/MSFFRN
摘要:大多数SR方法没有利用LR的多尺度特征去提升网络的表示能力。此外,他们也并没有利用网络间的层次特征。作者提出了一种多尺度特征融合残差网络(MSFFRN)。作者基于残差学习,提出了多尺度特征融合残差块(MSFFRB)去检测和融合不同尺度的特征。此外,MSFFRB和浅层特征被用作不同层次的特征用于全局特征融合。最后,作者基于融合的全局特征重建HR图像。
文献综述:SRCNN是第一个用于SR的网络,自此以后越来越多的研究围绕着卷积神经网络。VDSR通过增加网络的深度和残差学习获得极大的提升。EDSR是增强的SRResNet通过去除BN层并且使用更大更深的网络结构。RDN利用残差密集块去从全部卷积层中进一步提取层次特征。RCAN通过利用RIR结构和通道注意力机制去避免深度神经网络的训练困难。尽管这些方法在PSNR和SSIM上获得了很大的性能提升,但是这些方法都是通过搭建更深和更复杂的网络结构ÿ