金字塔场景解析网络(Pyramid Scene Parsing Network )

PSPNet是为了解决场景解析中的全局上下文信息利用问题,通过金字塔池化模块结合局部和全局线索,提高像素级预测的准确性。该网络结构在全卷积网络基础上,引入多尺度特征融合,有效处理混淆类别、不显眼类别和不匹配的关系,提升复杂场景理解的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

基于语义分割的场景解析是计算机视觉中的基本主题。目标是为图像中的每个像素分配一个类别标签。场景解析提供了对场景的完整理解。它预测每个元素的标签、位置和形状。

场景解析的难度与场景和标签的多样性密切相关

最先进的场景解析框架主要基于全卷积网络 (FCN) [26]。基于深度卷积神经网络 (CNN) 的方法提高了对对象的动态理解。

对于准确的场景感知,知识图依赖于场景上下文的先验信息。我们发现,当前基于FCN的模型的主要问题是缺乏利用全局场景类别线索的合适策略。对于典型的复杂场景理解,以前为了获得全局图像级别的特征,空间金字塔池 [18] 被广泛使用,其中空间统计为整体场景解释提供了良好的描述符。空间金字塔池网络 [12] 进一步增强了能力。 

与这些方法不同,为了结合合适的全局特征,我们提出了金字塔场景解析网络 (PSPNet)。除了用于像素预测的传统扩张型FCN [3,40] 之外,我们还将像素级特征扩展到专门设计的全局金字塔池。局部和全局线索共同使最终预测更加可靠。我们还提出了一种深度监督损失的优化策略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值