文本的数值化表示

我们尝试使用计算机解决文本问题时,首先就是要对文本进行数值化表示,因为深度学习模型只能对数值做计算,不能直接计算文本。文本的数值化或向量化有很多方法,常见的有独热编码、散列编码、TF-IDF算法和词嵌入等。

独热编码

独热编码(One-hot Encoding)是一种常用的数据编码方式,在机器学习、自然语言处理等领域广泛应用。它是将分类变量转换为数值变量的一种方法。

在独热编码中,将每个分类变量取值映射到一个唯一的整数标识符。然后,将每个整数标识符表示为一个二进制向量,向量的长度等于分类变量的取值个数。对于某个具体的取值,它对应的位置为1,其他位置为0,从而实现了对分类变量的编码。

例如,假设有一个分类变量“颜色”,它有三个取值:红色、黄色和蓝色。可以将它们映射到整数标识符0、1、2,然后用二进制向量表示,如下所示:

  • 红色:[1, 0, 0]
  • 黄色:[0, 1, 0]
  • 蓝色:[0, 0, 1]

散列编码

散列编码是指用散列函数(也叫哈希函数)直接对词做散列运算,编码为一个固定长度的向量。这种表示方法可节省内存、避免独热编码带来的梯度稀疏等问题,但是容易产生散列冲突,而且缺少语义信息

TF-IDF

TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索与文本挖掘的常用算法,它可以帮助我们衡量一个词语在一篇文档中的重要程度。TF-IDF算法基于词频和逆文档频率两个指标来计算每个词语的权重。

TF(词频)指的是某个词在一篇文档中出现的频率。计算公式为:某个词在文档中出现的次数 / 文档中所有词的总数。

IDF(逆文档频率)指的是包含某个词的文档数目的倒数。计算公式为:总文档数 / 包含该词的文档数。

TF-IDF的计算公式为:TF-IDF = TF * IDF。即某个词在文档中出现的频率(TF)乘以包含该词的文档数目的倒数(IDF),得到该词的TF-IDF值。

词嵌入

词嵌入(Word Embedding)是一种在自然语言处理中常用的技术,它可以将单词映射到高维空间中的向量,并将单词之间的语义关系反映在向量空间中的距离关系上。通过词嵌入技术,我们可以将自然语言中的文本转化为计算机可以处理的数值形式,从而更好地进行文本处理和分析。

词嵌入的生成方式有很多,其中最为常见的是基于神经网络的方法,如Word2Vec和GloVe。这些方法通常是基于大量文本数据进行训练,以学习单词的分布式表示。

在Word2Vec模型中,通常有两种训练方法:CBOW和Skip-Gram。CBOW模型是根据上下文单词来预测中心单词,而Skip-Gram模型则是根据中心单词来预测上下文单词。在训练过程中,模型会根据单词之间的共现关系来更新单词的向量表示。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值