我们尝试使用计算机解决文本问题时,首先就是要对文本进行数值化表示,因为深度学习模型只能对数值做计算,不能直接计算文本。文本的数值化或向量化有很多方法,常见的有独热编码、散列编码、TF-IDF算法和词嵌入等。
独热编码
独热编码(One-hot Encoding)是一种常用的数据编码方式,在机器学习、自然语言处理等领域广泛应用。它是将分类变量转换为数值变量的一种方法。
在独热编码中,将每个分类变量取值映射到一个唯一的整数标识符。然后,将每个整数标识符表示为一个二进制向量,向量的长度等于分类变量的取值个数。对于某个具体的取值,它对应的位置为1,其他位置为0,从而实现了对分类变量的编码。
例如,假设有一个分类变量“颜色”,它有三个取值:红色、黄色和蓝色。可以将它们映射到整数标识符0、1、2,然后用二进制向量表示,如下所示:
- 红色:[1, 0, 0]
- 黄色:[0, 1, 0]
- 蓝色:[0, 0, 1]
散列编码
散列编码是指用散列函数(也叫哈希函数)直接对词做散列运算,编码为一个固定长度的向量。这种表示方法可节省内存、避免独热编码带来的梯度稀疏等问题,但是容易产生散列冲突,而且缺少语义信息
TF-IDF
TF-IDF(Term Frequency-Inverse Document Frequency)是一种用于信息检索与文本挖掘的常用算法,它可以帮助我们衡量一个词语在一篇文档中的重要程度。TF-IDF算法基于词频和逆文档频率两个指标来计算每个词语的权重。
TF(词频)指的是某个词在一篇文档中出现的频率。计算公式为:某个词在文档中出现的次数 / 文档中所有词的总数。
IDF(逆文档频率)指的是包含某个词的文档数目的倒数。计算公式为:总文档数 / 包含该词的文档数。
TF-IDF的计算公式为:TF-IDF = TF * IDF。即某个词在文档中出现的频率(TF)乘以包含该词的文档数目的倒数(IDF),得到该词的TF-IDF值。
词嵌入
词嵌入(Word Embedding)是一种在自然语言处理中常用的技术,它可以将单词映射到高维空间中的向量,并将单词之间的语义关系反映在向量空间中的距离关系上。通过词嵌入技术,我们可以将自然语言中的文本转化为计算机可以处理的数值形式,从而更好地进行文本处理和分析。
词嵌入的生成方式有很多,其中最为常见的是基于神经网络的方法,如Word2Vec和GloVe。这些方法通常是基于大量文本数据进行训练,以学习单词的分布式表示。
在Word2Vec模型中,通常有两种训练方法:CBOW和Skip-Gram。CBOW模型是根据上下文单词来预测中心单词,而Skip-Gram模型则是根据中心单词来预测上下文单词。在训练过程中,模型会根据单词之间的共现关系来更新单词的向量表示。