深度学习
文章平均质量分 58
despacito,
世间美好与你环环相扣。
展开
-
Batch Normalization:Ioffe and Svegedy的批标准化实现 (BN处理对CNN的影响)
地址:https://github.com/harrisonjansma/Research-Computer-Vision/blob/master/07-28-18-Implementing-Batch-Norm/BatchNorm.ipynb资源: Ioffe 和Szegedy的原始论文. here. 在非线性之前或之后插入批量归一化? Usage explanation 有关TensorFlow中的数学和实现的说明. Pitfalls of Batch Nor..原创 2021-05-16 21:26:02 · 283 阅读 · 0 评论 -
tf.round(): 四舍六入五取偶
一、 tf.math.round按元素将张量的值四舍五入到最接近的整数。import tensorflow as tftf.math.round(x, name=None)四舍五入到偶数。也被称为银行家四舍五入。如果你想根据当前的系统舍入模式进行四舍五入,请使用tf::cint。例如:x = tf.constant([0.9, 2.5, 2.3, 1.5, -4.5])tf.round(x) # [ 1.0, 2.0, 2.0, 2.0, -4.0 ]大白话:小数部分小.原创 2020-12-09 20:46:03 · 2061 阅读 · 0 评论 -
tf.keras.preprocessing.image_dataset_from_directory
Image data preprocessingimage_dataset_from_directory function# from tensorflow.keras.preprocessing import image_dataset_from_directorytf.keras.preprocessing.image_dataset_from_directory( directory, labels="inferred", label_mode="int",翻译 2020-12-01 11:52:40 · 15677 阅读 · 12 评论 -
.plk文件的保存与读取
pickleimport pickle# 将字典保存.pkl文件with open(path + '.pkl', 'wb') as f: pickle.dump(location_dict, f)# 读取.pkl文件with open(file_path, 'rb') as f: data = pickle.load(f)# 封装保存Functiondef save_obj(data, saved_path): with open(saved_path + '原创 2020-11-16 20:18:11 · 2533 阅读 · 0 评论 -
tensoflow: 从文件夹加载数据管道的两种方式
1.ImageDataGeneratortrain_datagen = ImageDataGenerator(rescale=1./255, zoom_range=0.20, fill_mode="nearest")print(type(train_datagen)) # >>> <class 'keras.preprocessi..原创 2020-12-02 17:58:17 · 414 阅读 · 1 评论 -
深度学习模型评估指标
深度学习模型评估指标一个深度学习模型在各类任务中的表现都需要定量的指标进行评估,才能够进行横向的对比比较,包含了分类、回归、质量评估、生成模型中常用的指标。1分类评测指标图像分类是计算机视觉中最基础的一个任务,也是几乎所有的基准模型进行比较的任务,从最开始比较简单的10分类的灰度图像手写数字识别mnist,到后来更...转载 2020-03-13 20:59:26 · 6978 阅读 · 0 评论 -
Tensorflow实现线性回归模型
共分三部分:1.线性回归理论部分 2.代码实现 3.课后拓展 一.线性回归概念及基本原理概念:是一种统计方法,来确定两种或两种以上变量间相互依赖的定量关系。一元线性回归:y = w * x + b任务:根据训练数据预测一元线性回归模型,并用验证数据验证预测的一元线性回归模型是否正确。...原创 2018-10-09 17:12:31 · 1121 阅读 · 0 评论 -
tensoboard使用指南
一、tensorboard同时显示训练数据和测试数据的曲线activate tensorflow-gpu cd /d D:\jupyterCode\chapter4\run_vgg_tensorboard tensorbard --logdir=train:"train",test:"test"原创 2019-11-12 18:28:12 · 553 阅读 · 0 评论 -
TensorFlow卷积层的四种写法
转载自:https://github.com/AIspeakeryhl/tensorflow-/blob/master/%E5%8D%B7%E7%A7%AF%E5%B1%82卷积层 卷积核,一般用5*5或3*3 输出通道一般为64或128 #输入为3通道,输出为64通道,一共几个卷积核?...转载 2020-04-27 20:47:44 · 1379 阅读 · 0 评论 -
Python深度学习调试,常用操作:Real-time Update...
1.查看数据类型:type(object)2.查看数据维度:object.shape3. 图像读取,解码,改变大小操作报错:Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).image_string = t...原创 2020-01-04 07:20:59 · 502 阅读 · 0 评论 -
LeNet-5网络解读及代码实现
一、介绍 LeNet-5被大规模用于自动分类美国银行支票上的手写数字。该网络是一种卷积神经网络(CNN)。CNNs是现代最先进的基于深度学习的计算机视觉基础。这些网络建立在三个主要思想之上:局部感受野(local receptive fields)、共享权重(shared weights)和空间子抽样(spacial subsampling)。具有共享权重的局部感受野是卷积层的本质,...原创 2019-11-15 21:57:36 · 4108 阅读 · 2 评论 -
用自己的数据集制作类似于Cifar-10格式的数据集
前言: Cifar-10数据集事基于python2.7来写的,以下是修改后的基于python3的版本的Code。1.数据集制作代码:from PIL import Imageimport osimport numpy as npimport pickleda...原创 2019-10-14 18:06:49 · 3418 阅读 · 26 评论 -
Hinton、LeCun、Bengio联合署名深度学习综述(重点摘要)
深度学习能够发现大数据中的复杂结构。它是利用BP算法来完成这个发现过程的。BP算法能够指导机器如何从前一层获取误差而改变本层的内部参数,这些内部参数可以用于计算表示。深度卷积网络在处理图像、视频、语音和音频方面带来了突破,而递归网络在处理序列数据,比如文本和演讲方面表现出了闪亮的一面。几十年来,想要构建一个模式识别系统或者机器学习系统,需要一个精致的引擎和相当专业的知识来设计一个特征提取器,把...转载 2018-08-17 13:58:22 · 441 阅读 · 0 评论 -
TensorFlow构建神经网络(CNN , Mnist数据集)
一. 卷积神经网络(CNN)1.卷积神经网络概念2.卷积神经网络过程讲解3.代码实现一.卷积神经网络简介:来历: Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出卷积神经网络。优点: CNN能够得出原始图像的有效表征,这使得CNN能够直接从原始像素中,经过...原创 2018-10-18 21:54:37 · 494 阅读 · 0 评论 -
Tensorflow实现逻辑回归模型(Mnist数据集)
共三部分:1.Mnist数据集的介绍与获取2.softmax函数及Tensorflow基本语法3.代码实现一.Mnist数据集的介绍简介:手写数字数据库,它有60000个训练样本集和10000个测试样本集官网:http://yann.lecun.com/exdb/mnist/外观: Image部分:手写体的图片label部分:图片代表着哪个数字...原创 2018-10-12 15:59:08 · 1024 阅读 · 0 评论 -
Tensorflow构建神经网络(RNN , Mnist数据集)
二. 循环神经网络(RNN)1.RNN神经网络的概念及相关介绍概念: 对时间序列上的变化进行建模的一种神经网络。优点: 基于之前的运行结果或者时间点,进行当前的预测。2.代码部分import tensorflow as tf#引入RNNfrom tensorflow.contrib import rnnfrom tensorflo...原创 2018-10-20 22:04:31 · 447 阅读 · 0 评论 -
神经网络模型的保存和读取(基于Mnist数据集)
#Import MNIST datafrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets("data/",one_hot=True)import tensorflow as tf#Parameterslearning_rate = 0.001batch_...原创 2018-10-26 20:47:32 · 2634 阅读 · 1 评论 -
读取VGG16网络生成的.npy文件的参数
import numpy as npdata_dict = np.load('vgg16.npy', encoding='latin1').item()keys = sorted(data_dict.keys())for key in keys: weights = data_dict[key][0] biases = data_dict[key][1] pri...原创 2018-11-01 21:37:26 · 4782 阅读 · 0 评论 -
TensorFlow:制作自己的TFRecord数据集 读取、显示及代码详解
TensorFlow(二)制作自己的TFRecord数据集 读取、显示及代码详解2017-02-27 12:10:00 来源:miaomiaoyuan的博客 TensorFlow制作自己的TFRecord数据集 读取、显示及代码详解:在跑通了官网的mnist和cifar10数据之后,笔者尝试着制作自己的数据集,并保存,读入,显示。 TensorFlow可以支持cifar1...转载 2019-02-21 17:10:32 · 382 阅读 · 1 评论 -
tf.truncated_normal_initializer()
转载自:https://blog.csdn.net/BTUJACK/article/details/80803914import tensorflow as tft = tf.truncated_normal_initializer(stddev=0.1, seed=1)v = tf.get_variable('v', [1], initializer=t)with tf...转载 2019-03-18 13:36:49 · 733 阅读 · 0 评论 -
Anaconda3+tensorflow-gpu+CUDA+cuDNN+PyCharm深度学习环境通用配置
笔记本配置信息:操作系统:Win10_x64GPU型号:GeForce 830M(或者其他型号GPU)一、Anaconda3-5.2.0-Windows-x86_64网址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 最新版本在官网下载,历史版本可以在清华镜像下载,下载后安装即可。...原创 2019-08-16 01:35:40 · 3650 阅读 · 4 评论