tf.truncated_normal_initializer()

转载自:

https://blog.csdn.net/BTUJACK/article/details/80803914

import tensorflow as tf

t = tf.truncated_normal_initializer(stddev=0.1, seed=1)

v = tf.get_variable('v', [1], initializer=t)

 

with tf.Session() as sess:

for i in range(1, 10, 1):

sess.run(tf.global_variables_initializer())

print(sess.run(v))

输出:

[-0.08113182]

[ 0.06396971]

[ 0.13587774]

[ 0.05517125]

[-0.02088852]

[-0.03633211]

[-0.06759059]

[-0.14034753]

[-0.16338211]

 

tf.truncated_normal_initializer 从截断的正态分布中输出随机值。

生成的值服从具有指定平均值和标准偏差的正态分布,如果生成的值大于平均值2个标准偏差的值则丢弃重新选择。

 

ARGS:

mean:一个python标量或一个标量张量。要生成的随机值的均值。

stddev:一个python标量或一个标量张量。要生成的随机值的标准偏差。

seed:一个Python整数。用于创建随机种子。查看 tf.set_random_seed 行为。

dtype:数据类型。只支持浮点类型。

 

这是神经网络权重和过滤器的推荐初始值。

 
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值