我觉得我还可以再抢救一下——0.999...=1的前生今世

本篇文章谢绝转载 \Large\fbox{\textcolor{red}{本篇文章谢绝转载}}
不知从什么时候开始,人们就开始了关于 0.999 ⋯ = 1 0.999\cdots=1 0.999=1的激烈讨论,一开始绝大都数人都不愿意相信,但随着一系列的证明方法发出,数学界都普遍接受了这一事实。

但是

还是有很多人不相信这一结论,他们认为可以根据运算、特别是微积分的重要极限的结果确定 0.999 ⋯ 不 等 于 1 0.999\cdots不等于1 0.9991
好,现在先给大家打一针镇定剂: 0.999 ⋯ 0.999\cdots 0.999 1 1 1 是严格相等的

什么!又是欧拉???

不出所料,看到标题大家估计都猜到了,本节和欧拉有关(偷笑)。
的确证明最早出现在 1770 年欧拉的《代数的要素》中,不过当时他证明的是 10 = 9.999 ⋯ 10=9.999\cdots 10=9.999.

这个证明好像有点问题

关于这个问题最简单的证明就是
令 x = 0.999 ⋯ ∴ 10 x = 9.999 ⋯ ∴ 9 x = 9 ∴ x = 1 \begin{aligned} 令x&=0.999\cdots \\ \therefore10x&=9.999\cdots \\ \therefore9x&=9 \\ \therefore x&=1 \end{aligned} x10x9xx=0.999=9.999=9=1

∵ 1 3 = 0.333 ⋯ ∴ 1 = 0.999 ⋯ \begin{aligned} \because\frac{1}{3}&=0.333\cdots \\ \therefore1&=0.999\cdots \end{aligned} 311=0.333=0.999

是不是感觉很有道理。

二义性


对于第一个证明过程,有人认为可以把 0.999 ⋯ 0.999\cdots 0.999 看成无限个分数的和:
0.999 ⋯ = 9 10 + 9 100 + 9 1000 + ⋯ 0.999\cdots=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots 0.999=109+1009+10009+
因此,这些人认为 0.999 ⋯ 0.999\cdots 0.999代表着一个计算过程的结果,而 1 1 1 又是另一个数,缺少一定的严谨,怎么可以等价起来呢?
问题的争论的焦点就集中在 0.999 ⋯ 0.999\cdots 0.999到底是一个结果,还是代表着一个过程,这就是数学里所谓的二义性。

什么是二义性?

某个句子存在不只一棵语法树,则称该句子是二义性的。

其实像 0.999 ⋯ = 9 10 + 9 100 + 9 1000 + ⋯ 0.999\cdots=\frac{9}{10}+\frac{9}{100}+\frac{9}{1000}+\cdots 0.999=109+1009+10009+这个无限的过程,我们也可以理解成一个数。
如一开始用 1 3 = 0.333 ⋯ \frac{1}{3}=0.333\cdots 31=0.333去证明 0.999 ⋯ = 1 0.999\cdots=1 0.999=1,很多人都相信这个证明过程是对的,主要是一开始在潜意识里认为第一步 1 3 = 0.333 ⋯ \frac{1}{3}=0.333\cdots 31=0.333就是对的,基于这样的原始认知,后面的证明过程也就没有问题。

从某角度上来看,无论是 1 3 = 0.333 ⋯ \frac{1}{3}=0.333\cdots 31=0.333还是 0.999 ⋯ = 1 0.999\cdots=1 0.999=1,本质上都是一样,当你承认其中一个成立的时候,另一个自然也就成立。不过,无论是哪一种情况,很多人会认为 0.999 ⋯ 0.999\cdots 0.999只是无限接近于1,并不能很严谨、很准确的说明这个值就一定等于1。

真正严格的证明

既然涉及到“无限接近”,那自然就逃不了“极限了”
咳咳咳!大家被迷惑了这么久,现在就给出教科书式完美的解答:
0.999 ⋯ 9 ⎵ n = lim ⁡ n → ∞ ∑ k = 1 n 9 1 0 k = lim ⁡ n → ∞ ( 1 − 1 1 0 k ) = 1 − lim ⁡ n → ∞ ∑ k = 1 n 1 1 0 k = 1 \large0.999\underbrace{\cdots9}_{n}=\lim_{n\to\infty}\sum\limits^{n}_{k=1}\frac{9}{10^k}=\lim_{n\to\infty}\left(1-\frac{1}{10^k}\right)=1-\lim_{n\to\infty}\sum^{n}_{k=1}\frac{1}{10^k}=1 0.999n 9=nlimk=1n10k9=nlim(110k1)=1nlimk=1n10k1=1
不过第一次用极限证明这个问题的时候,好像它的理论还没有被完善,所以在那时还不算是玩美得解答(反正现在是了)

在极限以后的证明

后出现了集合论,又给出如下的证明过程:
给定一组区间套,则数轴上恰有一点包含在所有这些区间中 0.999 ⋯ 0.999\cdots 0.999对应于区间套 [ 0 , 1 ] 、 [ 0.9 , 1 ] 、 [ 0.99 , 1 ] 、 [ 0.999 , 1 ] … [0,1]、[0.9,1]、[0.99,1]、[0.999,1]\dots [0,1][0.9,1][0.99,1][0.999,1],而所有这些区间的唯一交点就是 1 1 1,所以 0.999 ⋯ = 1 0.999\cdots=1 0.999=1

或者是这样的证明:

所有比 0.999 ⋯ 0.999\cdots 0.999小的有理数都比 1 1 1小,而可以证明所有小于1的有理数总会在小数点后某处异于 0.999 ⋯ 0.999\cdots 0.999(因而小于 0.999 ⋯ 0.999\cdots 0.999),这说明 0.999 ⋯ 0.999\cdots 0.999 1 1 1的戴德金分割是一样的集合,从而说明 0.999 ⋯ = 1 0.999\cdots=1 0.999=1

The story in the future

对于这个问题,估计还会争论很久,或许在将来某个时刻会因为这个证明诞生更伟大的数学成果,也有可能就是一个无法解决的问题。不过,这也正是数学的魅力所在,往往一个问题的出现,其解决过程会推动数学某些领域,甚至影响其他学科的发展。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值