如图:
A
D
垂
直
于
B
C
,
设
B
C
=
x
,
D
C
=
y
,
A
D
=
h
,
A
B
=
c
,
B
C
=
a
,
A
C
=
b
AD垂直于BC,设BC=x,DC=y,AD=h,AB=c,BC=a,AC=b
AD垂直于BC,设BC=x,DC=y,AD=h,AB=c,BC=a,AC=b
根据勾股定理得:
x
=
a
−
y
x=a-y
x=a−y
h
2
=
b
2
−
y
2
h^2=b^2-y^2
h2=b2−y2
h
2
=
c
2
−
x
2
h^2=c^2-x^2
h2=c2−x2
∴
{
x
=
a
2
+
c
2
−
b
2
2
a
y
=
a
2
−
c
2
+
b
2
2
a
\therefore \begin{cases} & x=\large\frac{a^2+c^2-b^2}{2a} \\[2ex] & y=\large\frac{a^2-c^2+b^2}{2a} \\[2ex] \end{cases}
∴⎩⎪⎪⎨⎪⎪⎧x=2aa2+c2−b2y=2aa2−c2+b2
∴
h
=
b
2
−
y
2
=
b
2
−
(
a
2
c
2
+
b
2
)
2
4
a
2
=
4
a
2
b
2
−
(
a
2
c
2
+
b
2
)
2
2
a
\begin{aligned} \therefore h&=\sqrt{b^2-y^2} \\[2ex] & =\sqrt{b^2-\frac{\small(a^2c^2+b^2)\normalsize^2}{4a^2}} \\[2ex] &=\frac{\large\sqrt{\normalsize4a^2b^2-\small(a^2c^2+b^2)\large^2}}{2a} \end{aligned}
∴h=b2−y2=b2−4a2(a2c2+b2)2=2a4a2b2−(a2c2+b2)2
∴
S
△
A
B
C
=
1
2
a
h
=
1
2
a
×
4
a
2
b
2
−
(
a
2
−
c
2
+
b
2
)
2
2
a
=
1
4
4
a
2
b
2
−
(
a
2
−
c
2
+
b
2
)
2
\Large\therefore S_{\triangle ABC}=\frac{1}{2}ah=\frac{1}{2}a\times \frac{\large\sqrt{\normalsize4a^2b^2-\small(a^2-c^2+b^2)\large^2}}{2a}=\frac{1}{4}{\large\sqrt{\normalsize4a^2b^2-(a^2-c^2+b^2)\large^2}}
∴S△ABC=21ah=21a×2a4a2b2−(a2−c2+b2)2=414a2b2−(a2−c2+b2)2
化简即为海伦公式。
证毕
海伦公式——初中数学证明
最新推荐文章于 2023-09-24 10:48:15 发布