使用oneAPI 技术实现高性能的并行快速排序算法

1、算法分析

       在计算密集型应用中,排序算法的性能是一个关键因素。快速排序是一种常用的排序算法,其时间复杂度为O(n log n),但在处理大规模数据时,串行快速排序往往效率较低。通过利用英特尔 oneAPI 技术的并行计算能力,可以加速快速排序算法,提高其性能。oneAPI 提供了一种统一的编程模型和工具集合,使开发人员能够利用不同类型的处理器和加速器来实现高性能的并行计算。

2、解决方案

       并行化快速排序算法的核心思想是将数据集划分为较小的子集,然后在这些子集上并行地执行快速排序操作。为了实现这一目标,可以使用 oneAPI 的任务并行模型。

       首先,需要定义一个并行快速排序类,该类将负责实现并行快速排序算法。以下是该类的基本结构:

    template <typename T>

    class ParallelQuickSort {

    public:

      ParallelQuickSort() {}

    

      void operator()(sycl::handler &cgh) {

        // 获取全局范围

        sycl::nd_range<1> ndRange = cgh.get_nd_range();

    

        // 在此处添加代码:并行排序的实现

      }

    

      void setData(std::vector<T> &data) {

        data_ = data;

      }

    

      std::vector<T> getData() {

        return data_;

      }

    

    private:

      std::vector<T> data_;

    

      // 在此处添加代码:快速排序算法的实现

    };

       在上述代码中,定义了一个模板类 ParallelQuickSort,它包含一个调用运算符 operator(),在其中实现并行排序算法的逻辑。

       接下来,需要在 operator() 函数中实现并行排序的逻辑。在 operator() 函数中,首先获取全局范围 ndRange,然后使用 parallel_for 函数来实现并行计算。以下是在 operator() 函数中添加的代码段:

    cgh.parallel_for<class ParallelQuickSortKernel>(

        ndRange, [=](sycl::nd_item<1> item) {

          // 获取当前工作项的全局索引

          int globalId = item.get_global_id(0);

    

          // 在此处添加代码:调用快速排序算法进行排序

        });

       在上述代码中,使用 parallel_for 函数来进行并行计算。在 lambda 表达式中,获取当前工作项的全局索引 globalId,然后在此处添加代码来调用快速排序算法进行排序。

    private:

      std::vector<T> data_;

    

      void quickSort(std::vector<T> &arr, int low, int high) {

        if (low < high) {

          int pi = partition(arr, low, high);

    

          // 分别对划分后的两个子数组进行排序

          quickSort(arr, low, pi - 1);

          quickSort(arr, pi + 1, high);

        }

      }

    

      int partition(std::vector<T> &arr, int low, int high) {

        T pivot = arr[high];

        int i = low - 1;

    

        for (int j = low; j <= high - 1; j++) {

          if (arr[j] < pivot) {

            i++;

            std::swap(arr[i], arr[j]);

          }

        }

    

        std::swap(arr[i + 1], arr[high]);

        return i + 1;

      }

       在上述代码中,定义了两个私有函数:quickSort 和 partition。quickSort 函数实现了快速排序算法的递归调用逻辑。在每次递归中,选择一个基准元素(pivot),然后将数组划分为小于基准值和大于基准值的两个子数组。然后,分别对这两个子数组递归地调用 quickSort 函数。

       partition 函数实现了快速排序算法中的分区操作。在分区过程中,选择基准元素,并通过交换元素的位置来将数组划分为两个部分。所有小于基准值的元素位于基准元素的左侧,所有大于基准值的元素位于基准元素的右侧。

    void operator()(sycl::handler &cgh) {

      // 获取全局范围

      sycl::nd_range<1> ndRange = cgh.get_nd_range();

    

      // 并行排序

      cgh.parallel_for<class ParallelQuickSortKernel>(

          ndRange, [=](sycl::nd_item<1> item) {

            // 获取当前工作项的全局索引

            int globalId = item.get_global_id(0);

    

            // 调用快速排序算法进行排序

            quickSort(data_, 0, data_.size() - 1);

          });

    }

       在上述代码中,在 parallel_for 函数中调用 quickSort 函数来实现快速排序算法的并行计算。每个工作项将负责对数据的一个子集进行排序操作。

       最后,需要使用 ParallelQuickSort 类来实现完整的排序过程。以下是使用 oneAPI 编程模型和工具链实现并行快速排序算法的示例代码:

    #include <CL/sycl.hpp>

    #include <iostream>

    #include <vector>

    

    namespace sycl = cl::sycl;

    

    template <typename T>

    class ParallelQuickSort {

    public:

      ParallelQuickSort() {}

    

      void operator()(sycl::handler &cgh) {

        // 获取全局范围

        sycl::nd_range<1> ndRange = cgh.get_nd_range();

    

        // 并行排序

        cgh.parallel_for<class ParallelQuickSortKernel>(

            ndRange, [=](sycl::nd_item<1> item) {

              // 获取当前工作项的全局索引

              int globalId = item.get_global_id(0);

    

              // 调用快速排序算法进行排序

              quickSort(data_, 0, data_.size() - 1);

            });

      }

    

      void setData(std::vector<T> &data) {

        data_ = data;

      }

    

      std::vector<T> getData() {

        return data_;

      }

    

    private:

      std::vector<T> data_;

    

      void quickSort(std::vector<T> &arr, int low, int high) {

        if (low < high) {

          int pi = partition(arr, low, high);

    

          // 分别对划分后的两个子数组进行排序

          quickSort(arr, low, pi - 1);

          quickSort(arr, pi + 1, high);

        }

      }

    

      int partition(std::vector<T> &arr, int low, int high) {

        T pivot = arr[high];

        int i = low - 1;

    

        for (int j = low; j <= high - 1; j++) {

          if (arr[j] < pivot) {

            i++;

            std::swap(arr[i], arr[j]);

          }

        }

    

        std::swap(arr[i + 1], arr[high]);

        return i + 1;

      }

    };

    

    int main() {

      // 初始化数据

      std::vector<int> data = {9, 4, 2, 7, 5, 1, 8, 3, 6};

    

      // 创建队列和设备

      sycl::default_selector selector;

      sycl::queue queue(selector);

    

      // 创建缓冲区

      sycl::buffer<int> buffer(data.data(), sycl::range<1>(data.size()));

    

      // 使用 oneAPI 进行排序

      queue.submit([&](sycl::handler &cgh) {

        auto acc = buffer.get_access<sycl::access::mode::read_write>(cgh);

        cgh.single_task<class SortTask>([=]() {

          ParallelQuickSort<int> parallelQuickSort;

          parallelQuickSort.setData(acc.get_pointer());

          parallelQuickSort(cgh);

          acc.get_pointer() = parallelQuickSort.getData();

        });

      });

    

      // 从缓冲区获取结果

      auto result = buffer.get_access<sycl::access::mode::read>();

    

      // 打印排序结果

      for (int i = 0; i < result.get_range()[0]; i++) {

        std::cout << result[i] << " ";

      }

      std::cout << std::endl;

    

      return 0;

    }

       上述代码中,首先初始化一个整数向量 data,然后创建一个 sycl::buffer 对象,用于存储数据。接下来,使用 oneAPI 的队列和设备来提交并行计算任务。在任务中,将数据传递给 ParallelQuickSort 类,并调用它来执行并行快速排序算法。最后,从缓冲区中获取排序后的结果,并将其打印出来。

这样,就成功地利用英特尔 oneAPI 技术实现了高性能的并行快速排序算法。通过利用异构计算资源,可以加速排序过程,提高算法的执行效率。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值