第4讲
反向传播
back propagation 源代码
反向传播代码
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.tensor([1.0]) # w的初值为1.0
w.requires_grad = True # 需要计算梯度
# y =w*x
def forward(x):
return x*w # w是一个Tensor
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
print("predict (before training)", 4, forward(4).item())
for epoch in range(100):
for x, y in zip(x_data, y_data):
l =loss(x,y) #前向过程 l是一个张量,tensor主要是在建立计算图 forward, compute the loss
l.backward() #反向自动求梯度 每次backward计算完成之后 计算图会被释放 若需要下一次计算 需要构建新计算图 backward,compute grad for Tensor whose requires_grad set to True
print('\tgrad:', x, y, w.grad.item())
w.data = w.data - 0.01 * w.grad.data # 权重更新时,注意grad也是一个tensor,所以需要取得其grad.data,也就算说这里是数值计算而非矩阵 向量 高维运算 用grad.data计算不会建立计算图
w.grad.data.zero_() # after update, remember set the grad to zero
print('progress:', epoch, l.item()) # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, forward(4).item())
作业
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [6.0, 14, 26]
#y=2x**2+2x+2
w_1 = torch.tensor([1.0]) # w_1的初值为1.0
w_2 = torch.tensor([1.0]) # w_2的初值为1.0
b = torch.tensor([1.0]) # b的初值为1.0
w_1.requires_grad = True # 需要计算梯度
w_2.requires_grad = True # 需要计算梯度
b.requires_grad = True # 需要计算梯度
# y =w*x*x+q*x+b
def forward(x):
return w_1*x*x+w_2*x+b # w是一个Tensor
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
print("predict (before training)", 4, forward(4).item())
for epoch in range(1000):
for x, y in zip(x_data, y_data):
l =loss(x,y) #前向过程 l是一个张量,tensor主要是在建立计算图 forward, compute the loss
l.backward() #反向自动求梯度 每次backward计算完成之后 计算图会被释放 若需要下一次计算 需要构建新计算图 backward,compute grad for Tensor whose requires_grad set to True
#print('\tgrad:', x, y, w_1.grad.item(),w_2.grad.item(),b.grad.item())
w_1.data = w_1.data - 0.02*w_1.grad.data # 权重更新时,注意grad也是一个tensor,所以需要取得其grad.data,也就算说这里是数值计算而非矩阵 向量 高维运算 用grad.data计算不会建立计算图
w_2.data = w_2.data - 0.02*w_2.grad.data # 权重更新时,注意grad也是一个tensor,所以需要取得其grad.data,也就算说这里是数值计算而非矩阵 向量 高维运算 用grad.data计算不会建立计算图
b.data = b.data - 0.09 * b.grad.data # 权重更新时,注意grad也是一个tensor,所以需要取得其grad.data,也就算说这里是数值计算而非矩阵 向量 高维运算 用grad.data计算不会建立计算图
w_1.grad.data.zero_() # after update, remember set the grad to zero
w_2.grad.data.zero_() # after update, remember set the grad to zero
b.grad.data.zero_() # after update, remember set the grad to zero
print('progress:', epoch, w_1.data,w_2.data,b.data,l.item()) # 取出loss使用l.item,不要直接使用l(l是tensor会构建计算图)
print("predict (after training)", 4, forward(4).item())