【hadoop】MapReduce入门WordCountTop10

本文介绍了MapReduce的基本概念,包括其核心功能、优缺点和编程规范。接着通过一个WordCount并显示前10的实例,详细讲解了Mapper、Reducer和Driver阶段的操作,展示了如何在Hadoop上进行离线数据处理。
摘要由CSDN通过智能技术生成

一、MapReduce概述

  1. 定义
  1. MapReduc是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架
  2. MapReduce的核心功能是将用户编写的业务逻辑代码自带默认组件整合成一个完成的分布式运算程序,并发运行在一个Hadoop集群上
  1. Mapreduce的优缺点
    优点:
  1. MapReduce易于编程:它简单的实现一些接口,就可以完成一个分布式程序
  2. 良好的扩展性:当计算机资源不能得到满足的时候,可以通过简单的增加机器来扩展计算能力
  3. 高容错性:MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性,比如其中一台机器挂了,它可以把上面的计算任务转移到另一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。
  4. 适合PB级以上海量数据的离线处理:可以实现千台服务器集群并发工作,提供数据处理能力

缺点:

  1. 不擅长实时计算:无法像MySql一样,在毫秒或者秒级内返回结果
  2. 不擅长流式计算:流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化,这是因为MapReduce自身的设计特点决定了数据源必须是静态的。
  3. 不擅长DAG(有向图)计算:多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的地下
  1. MapReduce的核心思想
  1. 第一个阶段的MapTask并发实例,完全并行运行,互不相干。
  2. 第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值