一、MapReduce概述
- 定义
- MapReduc是一个
分布式运算程序的编程框架
,是用户开发“基于Hadoop的数据分析应用”的核心框架- MapReduce的核心功能是将
用户编写的业务逻辑代码
和自带默认组件
整合成一个完成的分布式运算程序
,并发运行在一个Hadoop集群上
- Mapreduce的优缺点
优点:
- MapReduce易于编程:
它简单的实现一些接口,就可以完成一个分布式程序
- 良好的扩展性:当计算机资源不能得到满足的时候,可以通过
简单的增加机器
来扩展计算能力- 高容错性:MapReduce设计的初衷就是使程序能够部署在廉价的PC机器上,这就要求它具有很高的容错性,比如
其中一台机器挂了,它可以把上面的计算任务转移到另一个节点上运行,不至于这个任务运行失败
,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。- 适合PB级以上海量数据的离线处理:可以实现千台服务器集群并发工作,提供数据处理能力
缺点:
- 不擅长实时计算:无法像MySql一样,在毫秒或者秒级内返回结果
- 不擅长流式计算:流式计算的
输入数据是动态的
,而MapReduce的输入数据集是静态的,不能动态变化,这是因为MapReduce自身的设计特点决定了数据源必须是静态的。- 不擅长DAG(有向图)计算:多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,
每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的地下
。
- MapReduce的核心思想
- 第一个阶段的MapTask并发实例,完全并行运行,互不相干。
- 第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。