Flink-Transform(转换算子)|Map|Reduce|Split和Select|Connect和CoMap|Union

本文详细介绍了Apache Flink中的转换算子,包括map、flatMap、filter、keyBy、reduce、split、select、connect、coMap和union。通过实例展示了它们的功能和用法,如flatMap用于展开列表,keyBy进行逻辑分区,reduce进行聚合操作,split按条件拆分流,以及connect和union的区别。此外,还提供了代码GitHub链接供进一步学习。
摘要由CSDN通过智能技术生成

代码GitHubhttps://github.com/SmallScorpion/flink-tutorial.git

map

在这里插入图片描述

val streamMap = stream.map {
    x => x * 2 }

在这里插入图片描述

flatMap

flatMap的函数签名:def flatMap[A,B](as: List[A])(f: A ⇒ List[B]): List[B]
例如: flatMap(List(1,2,3))(i ⇒ List(i,i))
结果是List(1,1,2,2,3,3),
而List(“a b”, “c d”).flatMap(line ⇒ line.split(" "))
结果是List(a, b, c, d)。

val streamFlatMap = stream.flatMap{
   
    x => x.split(" ")
}

Filter

val streamFilter = stream.filter{
   
    x => x == 1
}

在这里插入图片描述

KeyBy

在这里插入图片描述
DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。
这些算子可以针对KeyedStream的每一个支流做聚合:

  1. sum()
  2. min()
  3. max()
  4. minBy()
  5. maxBy()
// 取以ID为组最低的温度
    val keyByDStream: DataStream[SensorReading] = dataDstream.keyBy("id").minBy("temperature")

在这里插入图片描述

Reduce

KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

 // 3. 复杂聚合操作,reduce,得到当前id最小的温度值,以及最新的时间戳+1
    val reduceStream: DataStream[SensorReading] = dataDstream
      .keyBy("id")
      .reduce( (curState, newData) =>
        // curState是之前数据 newData是现在数据
        SensorReading( curState.id, newData.timestamp + 1, curState
flink-shaded-hadoop3和flink-shaded-hadoop3-uber是Apache Flink项目中与Hadoop 3.x版本集成相关的两个模块。 首先,Hadoop是一个分布式计算框架,用于处理大规模数据。而Flink是一个快速而可扩展的流式处理引擎,它可以在实时和批处理任务之间无缝切换。为了与Hadoop集成,并且能够在Flink中使用Hadoop生态系统的各种功能和工具,例如HDFS、YARN和MapReduce等,Flink提供了与Hadoop版本兼容的特殊模块。 flink-shaded-hadoop3模块是Flink所提供的一个可防止与Hadoop 3.x版本依赖冲突的模块。在Flink应用程序中,当需要使用Hadoop 3.x相关功能时,可以将flink-shaded-hadoop3模块添加到项目的依赖中。该模块会将特定版本的Hadoop 3.x依赖项重新打包,以避免与Flink自身或其他依赖项产生冲突。这样一来,Flink就能够与Hadoop 3.x版本协同工作,平滑地使用Hadoop的功能。 而flink-shaded-hadoop3-uber模块则是更加完整和庞大的用于集成Hadoop 3.x版本的模块。它将包含Hadoop 3.x依赖的所有必需库和资源等,以便于使用和编译。相比于flink-shaded-hadoop3模块,flink-shaded-hadoop3-uber模块更像是一个“全能版”,其中包含了实现与Hadoop 3.x版本深度集成所需的所有组件。这使得开发人员能够方便地构建和部署Flink应用程序,并且在与Hadoop生态系统进行交互时更加方便。 总的来说,flink-shaded-hadoop3和flink-shaded-hadoop3-uber模块都是Flink为了与Hadoop 3.x版本无缝集成,提供的两个特殊模块。它们通过重新打包Hadoop依赖,解决了可能产生的冲突问题,使得Flink能够顺利使用并利用Hadoop的功能和工具。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值