BOZJ1833详细题解

本文详细介绍了BOZJ1833的解题思路,涉及数位动态规划(数位dp)的概念,并给出了解决此类问题的递推公式和初始化方法。通过举例说明如何计算特定范围内每个数字出现的次数,帮助读者理解算法并解决问题。
摘要由CSDN通过智能技术生成

BOZJ1833详细题解

1.题目

BOZJ1833

Description

给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次。

Input

输入文件中仅包含一行两个整数a、b,含义如上所述。

Output

输出文件中包含一行10个整数,分别表示0-9在[a,b]中出现了多少次。

Sample Input

​ 1 99

Sample Output

​ 9 20 20 20 20 20 20 20 20 20

说是一道典型的数位dp的问题.首先我们解决什么是数位dp的问题.现在有一个题目,就是要求你求出[l,r]区间内满足一定条件的数的个数,这时我们很容易想到暴力求解的方案,但是一旦数据范围过大这种方法就行不通了,这个时候就用数位dp来解决,把数位拆成一个一个的进位,然后逐一比较看是否满足题目要求.

那么针对这个问题,如何求解呢.

首先我们要做的事情是找到从0-r所含0-9的个数,再用它减去0-l-1的0-9的个数.因为题目要求我们求得是[l,r]必须包括l,这样相减得到的区间恰为[l,r].那么现在我们需要求解的问题是一样的即求某个数x,从[0-x]中所含0-9的个数.

我们用f[i][j][k]来表示长度为i,首位为j,所含k的个数为多少.那么f[i][j][k]是要等于f[i-1][0-9][k],注意我们所要求的是长度为i,首位为j,所含k的个数是多少.举个例子的话就是求200-299所含k的个数是多少.我们抛开首位来看的话,首先我们是不是就要求出00-99所含k的个数是多少再往下推,得到我们需要的递推式.

f[i][j][k] = f[i][j][k] + f[i-1][j][k],这里我们是枚举了从00-99对于之后的首位,从200-299出现100次,所以首位出现的次数就是10i次方,我们再加上即可,此时j == k

那么初始化的函数为

    public static void gen() {
   
        pow[1] = 1L;
        for (int i = 2; i < 14; i++) {
   
            pow[i] = pow[i - 1] * 10;
        }//算10^i
        //14是因为题目给的范围就只有那么大
        for (int j = 0; j 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值