python图片数据增强,扩充

本文介绍了如何使用Python进行图片数据增强,通过多种技术扩充图像数据集,包括旋转、翻转、裁剪等操作,提升机器学习模型的泛化能力。
摘要由CSDN通过智能技术生成

python图片数据扩充

# coding:utf-8
'''
作者:TimeVShow
time:2019/8/29
效果:找到标签文件中的所有的图片,对其进行水平翻转,垂直翻转等操作,
并保留改变后的图片,同时在标签集中写入图片的信息
'''

import os
from PIL import Image, ImageFilter
import random


def process_train_set(data_dir="./data_sets/cat_12", list_file_name="train_list.txt"):
    file_list_0 = os.path.join(data_dir, list_file_name_0)
    file_list = os.path.join(data_dir, list_file_name)
    with open(file_list, "r+") as flist:
        read_data = flist.read()
        flist.truncate()#清空文件
        for eachline in read_data.split('\n'):
            img_path,label = eachline.split('\t')
            label = label.split("\n")[0]
            img_full_path = os.path.join(data_dir, img_path)
            #如果文件中的图片不存在,直接跳过
            if(os.path.exists(img_full_path) == False):
                continue
            # 进行图像处理和保存,并写入文件
            # 水平翻转

            img_path_temp = horizontalFlip(img_full_path)
            line = img_path_temp.replace(data_dir + "/", "") + "\t" + label + "\n"
            flist.write(line)

            # 垂直翻转

            img_path_temp = verticalFlip(img_full_path)
            line = img_path_temp.replace(data_dir + "/", "") + "\t" + label + "\n"
            flist.write(line)

            # 色彩抖动
            for jitterring_type in range(1, 9)
在机器学习任务中,标注数据扩充是一种常用的技术,用于增加训练数据的数量,提高模型的泛化能力和性能。Python提供了许多工具和库来实现标注数据扩充。 一种常用的数据扩充技术是图像增强。通过对原始图像进行旋转、翻转、缩放、平移、亮度调整等操作,可以生成多个新的图像样本。例如,使用Python的PIL库,我们可以通过旋转和翻转图像来生成更多不同角度和方向的图像样本。 另一种数据扩充技术是文本增强。对于文本分类任务,可以利用Python的文本处理库,如NLTK和gensim,对原始文本进行词语替换、同义词替换、句子重组等操作,生成多个新的文本样本。 此外,还有基于生成对抗网络(GAN)的数据扩充方法。GAN模型可以生成逼真的合成数据,可以用来增加样本数量,同时保持数据的真实性。使用Python的深度学习框架,如TensorFlow和PyTorch,可以实现GAN模型,并生成新的合成数据。 需要注意的是,标注数据扩充虽然可以增加训练数据的数量,但并不是万能的。在扩充数据时,需要考虑数据的真实性和多样性,避免过度扩充导致模型过拟合。同时,还需要根据具体任务和领域特点选择合适的数据扩充方法。 综上所述,Python提供了多种方法实现标注数据扩充,包括图像增强、文本增强和基于GAN的数据生成。通过合理地扩充数据集,可以提高模型的泛化能力和性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值