矩阵分析与应用(1)

学习来源:《矩阵分析与应用》张贤达 清华大学出版社

矩阵的基本运算

1.矩阵的定义

        令R表示实数合集,C表示复数合集。则实矩阵定义为按照长方排列的实数集合,记作

A\in C^{m\times n} \Leftrightarrow A = [a_{ij}],a_{ij}\in C, i = 1,2,\cdots ,m; j = 1,2,\cdots,n

        而复矩阵则定义为按照长方阵列排列的复数集合,记作

A\in R^{m\times n} \Leftrightarrow A = [a_{ij}],a_{ij}\in R, i = 1,2,\cdots ,m; j = 1,2,\cdots,n

2.矩阵A的转置

        若 A= [a_{ij}] 是一个 m\times n 矩阵,则 A 的转置记作 A^{T},是一个 n\times m 矩阵,定义为 [A^{T}]_{ij} = a_{ij}

3.矩阵A的共轭转置

        实数的共轭是它本身。复数的共轭是实部不变,虚部取相反数。因此实数矩阵的共轭转置等同于转置。复数矩阵 A 的共轭转置记作 A^{H} ,是将矩阵 A 转置,再把每一个元素换为共轭复数。例如:

  A = \begin{bmatrix} 1 & i\\ 0& 1+i \end{bmatrix}, A^{H} = \begin{bmatrix} 1 & 0\\ -i& 1-i \end{bmatrix}

4.矩阵相乘

        m \times n 矩阵 A=[a_{ij}] 与 r \times s 矩阵 B=[b_{ij}] 的乘积 AB 只有当 n =r 时才存在,它是一个 m \times s 矩阵,定义为

 [AB]_{ij} = \sum_{k=1}^{n}a_{ik}b_{kj},i=1,2,\cdots ,m;j =1,2,\cdots,s

5.矩阵的内积

        令 A\in C^{m \times n} 和 B\in C^{m \times p} 为复矩阵。矩阵 A 和 B 的内积记作 \left \langle A, B\right \rangle = A^{H}B 。

6.矩阵的指数和对数

        矩阵 A 的指数为

 exp(A) = \sum_{k=0}^{\infty }\frac{1}{k!}A^{k}

        矩阵 A 的对数为

log(I_{n}-A) = -\sum_{k=0}^{\infty }\frac{1}{k!}A^{k}

其中 I_{n} 为n阶单位矩阵。

7.矩阵的导数和积分

        如果矩阵 A 的元素 a_{ij} 都是参数 t 的函数,则矩阵的导数定义为

\frac{dA}{dt} = \begin{bmatrix} \frac{da_{11}}{dt} & \frac{da_{12}}{dt} & \cdots &\frac{da_{1n}}{dt} \\ \frac{da_{21}}{dt} & \frac{da_{22}}{dt} & \cdots & \frac{da_{2n}}{dt}\\ \vdots & \vdots & &\vdots \\ \frac{da_{m1}}{dt} & \frac{da_{m1}}{dt} & \cdots & \frac{da_{mn}}{dt} \end{bmatrix}

        矩阵的积分为

\int Adt = \begin{bmatrix} \int a_{11}dt & \int a_{12}dt & \cdots &\int a_{1n}dt \\ \int a_{21}dt& \int a_{21}dt & \cdots & \int a_{2n}dt\\ \vdots & \vdots & &\vdots \\ \int a_{m1}dt&\int a_{m2}dt & \cdots & \int a_{mn}dt \end{bmatrix}

8.矩阵函数及其导数

        1)指数矩阵函数

exp(At) = I +At + \frac{A^{2}t^{2}}{2!} + \frac{A^{3}t^{3}}{3!} + \cdots

        2)指数矩阵函数的导数

\frac{d}{dt}exp(At) = Aexp(At) = exp(At)A

        3)矩阵乘积的导数

\frac{d}{dt}(AB) = \frac{dA}{dt}B + A\frac{dB}{dt}

其中, A 和 B 都是变量 t 的矩阵函数。

9.向量的线性无关性和非奇异矩阵

        若有一组 m 维向量 \left \{ u_{1},u_{2},\cdots ,u_{n} \right \} ,当方程 c_{1}u_{1}+c_{2}u_{2}+\cdots +c_{n}u_{n} = 0 只有零解 c_{1} = c_{2}=\cdots =c_{n}=0 ,则称向量组线性无关。若有一组不全为零的系数 c_{1},c_{2},\cdots ,c_{n} 使得上述方程成立,则称向量组线性相关。

        一个 n \times n 矩阵 A 是非奇异矩阵,当且仅当矩阵方程 Ax =0 只有零解 x 。若 A 不是非奇异的,则 A 是奇异矩阵。

10.阶梯型矩阵

        当一个 m \times n 矩阵满足

        1)所有全零行都位于矩阵的底部;

        2)每一个非全零行的首项元素总是在上一个非全零行的首项元素的右边;

        3)首项元素下面的同列元素全为零;

时,称矩阵为阶梯型矩阵。

        当一个阶梯型矩阵的每一个非零行的非零首项元素为1,且其也是所在列的唯一非零元素时,称该阶梯型矩阵为简约阶梯型矩阵。

        

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值